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0. INTRODUCTION

This document summarizes the results of a two-year research effort

on a number of mathematical and numerical issues related to finite elasto-

plasticity. The Principal Investigator of the project was Professor J.T.

Oden of The University of Texas.

The study set out to develop a general theory of finite elastoplasticity

which makes use of standard continuum thermodynamic arguments, but which

does not necessarily involve the assumption of existence of the yield

function, which does not require conventional assumptions of convexity

or differentiability of various functionals, which addresses and resolves

the issue of proper decomposition of elastic and plastic deformation measures,

and which under appropriate additional assumptions reduces to many theories

known to be capable of describing infinitesimal deformations of elasto-

plastic solids. In addition, general forms of representation of elasto-

plastic constitutive equations were sought which would provide some measure

of the effects of micromechanical changes in the constitution of the ma-

terial. Finally, this general theory was used as the basis for the con-

struction of new finite element methods for the calculation of large elasto-

plastic deformations, together with various algorithms and codes in order

to produce numerical solutions of representative problems in this area.

Positive results on each one of the objectives were obtained. In

particular, the following were accomplished:

1. Our theory is a theory of plasticity that does not necessarily

involve the concept of stress: indeed, materials are fully characterized

in a way consistent with thermodynamics by two stress potentials: the

free energy functional and the generalized flow potential.

2. The theory can produce as special cases all of the classical theories
of plasticity and hyper-elasticity. Yet it does not require the introduc-

* 'tion of a yield function, nor does it necessarily involve assumptions

of a normality rule of convexity.

-1-
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3. The notion of the Clark/Rockafellar generalized sub-differential
is used to provide a broad generalization of classical potential theory
and make the potential arguments applicable to non-differential non-convex
potentials. Isotropic function theory is used to further specialize accept-
able forms of these functionals.

4. A correct kinematics of finite elastoplastic deformations has
- been produced, we believe for the first time. This involves the use of

the polar decomposition theorem and a mathematically correct definition
of the so-called stress-relaxed referenced state.

5. Since a correct kinematics is developed and potentials are used,
the formulation make unnecessary the traditional difficulties of defining
a correct, objective stress rate.

6. A new collection of numerical algorithms has been developed based
on this theory. These have been developed in connection with finite element
models of finite elastoplastic behavior. A working computer code has been
developed and several example problems have been solved. While the code
is primarily a plane strain code which employs bilinear quadrilateral

* elements, it has been used to solve a number of problems in finite deforma-
tion plasticity and elasticity and results are consistent with those ob-
tained by other methods for special cases.

0.2 Publications

The following papers were published as a result of the reported work:

I. "Generalized Potentials in Finite Elastoplasticity," by S.J. Kim and

- J.T. Oden, International Journal of Engineering Science, Vol. 22, No.
11/12, 1984, pp. 1235-1257.

2. "Generalized Flow Potentials in Finite Elastoplasticity -- II. Examples,"
by S.J. Kim and J.T. Oden, International Journal of Engineering Science,
Vol. 23, No. 5, 1985, pp. 515-530.

3. "Finite Element Analysis of a Class of Problems in Finite Elastoplasti-
city Based on the Thermodynamical Theory of Materials of Type-N," by S.J.
Kim and J.T. Oden, Computer Methods in Applied Mechanics and Engineering,
(in press).

4. "KABOD-A Finite Element Program for Large Elastoplastic Deformations
Based on Generalized Flow Potentials," by S.J. Kim, TICOM Report 85-7,
Austin, Texas, 1985.

5. "Theory of Finite Elastoplasticity," by S.J. Kim, TICOM Report 85-6,
"" Austin, Texas, 1985.

0.3 Personnel

The following persons worked on this project:

1. Professor J. Tinsley Oden, Principal Investigator
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2. Seung Jo Kim, Graduate Research Assistant, who received his Ph.D.
degree in May, 1985.

-. 3, Tsung-L. Lin, Philippe Devloo, L. Demkowicz, J. Bass, and Luis
Faria provided a small portion of their time during various phases of
the project.

0.4 Technical Discussion

A summary of most of the major results is given in the remainder of

this report. These results include the development of kinematical relation-

ships, the notion of generalized potentials and their thermodynamic conse-

quences, representation results for flow potentials, finite element approxi-

mations, algorithms, and numerical results, some results on actual labora-

tory experiments and their correlation with the numerical solutions, and

suggestions for future research.

%
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CHAPTER I

INTRODUCTION

1.1 Introductory Comments

Classical plasticity theory is, in many ways, a product

of inductive thought, growing as it did from attempts to model

observed behavior of metals and soils under loading histories

sufficient to create permanent deformaton. This approach toward

the development of a mechanical theory is quite different from

the deductive methods of modern continuum mechanics, where the

framework for theories of material behavior is derived in a semi-

axiomatic way from a small collection of universal postulates

(laws of physics).

Over the last fifteen years, there have been numerous attempts

to provide a thermodynamic basis for a plasticity theory sufficiently

general to accommodate finite deformations but, at the same time,

not inconsistent with either continuum thermodynamics or classical

plasticity. While this volume of literature is too large to

be adequately referenced here, we mention as significant examples,

the works of GREEN and NAGHDI [1965], COLEMAN and GURTIN [1967],

VALANIS [1971], ERINGEN [1962], LEE [1969, 1981], NEMAT-NASSER
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[1979, 1982], HALPHEN and NGUYEN [1975], BHANDARI and ODEN [1973,

19751, RICE [19711, HAVNER and HILL [19821, and HAVNER [1982];

for more recent work and a more complete list of references in

this general area, the proceedings edited by LEE and MALLET [1982],

DESAI and GALLAGHER [1983], NEMAT-NASSERet. al [19841 and WILLAM

[19841 can be consulted.

There are several fundamental features of classical plasticity

70' that are particularly difficult to generalize in a way compatible

with modern continuum mechanics: the basic kinematical descriptions

such as the decompositions of strain and strain-rate measures

into distinct elastic and plastic parts; an appropriate definition

of stress rate; the existence of a yield function as distinct

from the usual collection of constitutive equations required

to characterize material behavior; so-called normality conditions;

etc. In addition, one hopes that a theory which does capture

and generalize these features will be capable of modeling aspects

of the behavior of real materials which fall outside the realm

of the classical theory, that it will be consistent with continuum

thermodynamics, and that it will be of a form that lends itself

to numerical approximation.

This report presents the development of a general theory

of elastoplastic materials, which includes infinitesimal elastoplas-

ticity as a special case, and which addresses and resolves each of

S " . - , % ,. • •• . . - . . - - '... •. . - .. - " . . . •
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the difficulties mentioned above. In addition, particular special

cases of the theory are considered which provide meaningful general-

izations of classical elasticity and plasticity to cases of practical

importance. In addition, a study of finite element approximations

of the governing equations is given, together with new numerical

algorithms and applications to representative problems.

1.2 Objectives and Scope

The first aim of this study is to develop a general theory

of finite elastoplasticity which makes use of standard continuum

thermodynamic arguments, does not necessarily involve the assump-

- tion of the existence of a yield function, does not require assump-

tions of convexity or differentiability of various functionals,

addresses and resolves the issue of proper decomposition of various

$"elastic" and "plastic" deformation measures in a consistent way,

and which, under appropriate additional assumptions, reduces to

many theories known to be capable of describing infinitesimal

deformations of elastoplastic solids.

Secondly, a general form of representation of the elastoplastic

constitutive relations is sought which provides for some measure

of the effects of micromechanical changes in the constitution of

the material. This is provided for by regarding the principal

"C7... ........-............ "...........-...... . ,....-..-"...
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constitutive functional as dependent on internal state variables

in addition to appropriate kinematical and thermal measures.

Thirdly, we wish to demonstrate that the theory lends itself

to numerical approximation. Toward this goal, finite element

* - approximations of the governing equations are derived along with

a collection of new algorithms for treating large-deformation

elastoplasticity problems. A code implementing these algorithms

was developed for the Harris 800 supermini-computer, and used

7:1 to test the algorithms on a number of representative example

problems.

Finally, we wish to develop consistent finite element methods

for the approximation of the equations and inequalities governing

the general theory, together with new algorithms for the numerical

analysis of representative problems.

We note that this list of objectives is a broad one, encom-

passing not only the creation of a new theory but also new numerical

methods and actual applicatons to representative problems. In

general, applications of such a general theory to concrete problems

is impossible without some information on the specific form of

constitutive equations and accompanying experimental data obtained

from tests on actual materials. To provide this information

for the problem studied analytically and numerically here, we

construct slight generalizations of some flow potential functionals

°" ,7
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proposed by BODNER and PARTOM (1972, 1975]. These data were

then used in the determinaton of necessary material constants.

This report is divided into six chapters.

In Chapter 2, following this Introductioni mathematical

and mechanical preliminaries are given. The principal mathematical

machinery needed for the general techniques we employ is the

theory of non-convex optimization and generalized subdifferentials

advanced by CLARKE [1973, 1976, 1977] and ROCKAFELLAR [1979, 1980].

PANAGIOTOPOULOUS [1982, 19851 observed that these ideas had applicaton

to certain plasticity problems. We outline the key mathematical

concepts in Chapter 2 and provide a brief review of relevant

ideas from non-convex analysis in an Appendix. Some essential

micromechanical features of materials relevant to plasticity

theories for metals are also reviewed with some interpretations

of appropriate internal state variables.

In Chapter 3, the ideas and concepts introduced in Chapter

2 are used in the formal study of thermodynamic restrictions

on the form of constitutive functions characerizing a general

class of materials which we call "Materials of Type N", since

they involve a generalized "normality" condition. A close examinaton

*" of the kinematical variables and a proposal of new alternative

* . kinematical measures of deformaton and deformaton rate are also

presented.

.. •

. - ., i . . .2 .< . -. . -..--- . .... -" -*. . " .** - . -. ,.*-- . -. - . -. --- -- .-- -'- .-. -.
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In Chapter 4, general representations of free energy and

flow potentials are developed. It is shown that classical theories

of elastoplasticity can be recovered from our theory as special

cases.

As an application of the theory, specific forms of the free

energy and flow potential functionals are presented which are

inspired by results of BODNER and PARTOM [1972, 1975]. To demonstrate

the feasibility of our theory and show how to determine the material

constants for our generalized Bodner-Partom material, actual

physical tension tests were performed. A numerical scheme for

using such sample experiments to determine material constants

is also presented and discussed.

The finite element approximation of the governing equations

is taken up in Chapter 5, where an incremental, total Lagrangian

algorithm is described. Specific applications are also considered,

.' including the numerical analysis of large-strain uniaxial stretching

and compressing of a specimen and the crushing (upsetting) of

rectangular billet in a metal forming simulation.

Among the new and special features of our results are the

following:

Technically, our continuum theory does not require

a concept of stress. The mechanical response of this class of

materials (excluding heat flux) is completely characterized by

- h".
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two potentials, the free energy and the flow potential, and only

subgradients of these functionals appear in the equations of

motion.

The potentials which play a predominant role in our

formulation are true potentials only in a very generalized sense,

made precise in Chapter 3; the potential functionals need not be

convex nor need they be differentiable.

It is not necessary to assume the existence of a yield

functon in order to describe yielding and elastoplastic deformation;

however, if a yield function is known for a given class of materials,

corresponding flow potentials can be constructed in a straight-

forward manner.

The various plasticity theories derivable from our

general formulation are not necessarily "incremental" nor "rate-tpe"

theories in the usual sense. This fact opens the door to several

new families of numerical methods for solving finite deformation

plasticity problems. We develop one such family of new schemes

here and apply it to representative examples.

ri2"
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CHAPTER II

PRELIMINARIES

In this chapter, several mathematical notions prerequisite to our

study and certain mechanical concepts on plastic deformation are pre-

sented.

2.1 Mathematical Preliminaries and Non-Convex Analysis

We begin with a summary of some recent results on non-convex

analysis which follows the ideas of CLARKE [1973] and ROCKAFELLAR

11980]. Unless noted otherwise, V denotes a topological vector

space, V* the topological dual of V , and (.,-> a duality pairing

on V* x V.

2.1.1 Contingen-t and Tangen~t Conei

Let K be a nonempty subset of a topologizal vector space V

Then the contingent cone to K' at a point u ( K is defined as the

set

CK(u) lim sup -(K-u) (2.1)0O +

Likewise, the tangent cone to K at u is defined as the set

TK(u) = lim inf -[K-u'(.2)

-l u
ul Ke 0+

,.:-.i-11-

..
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4 To interpret the notation used in (2.1) and (2.2), we use the

concept of a limit superior (inferior)of a multifunction defined on

a topological vector space given in the Appendix. Let r be a set-

valued function from [0 ,w) x K into V such that

r(e,u) -(K- u) =v C V I v =-(w-u), (2.3)

w C K, 6 E [0,o =)}

Then

C K(u) lira sup r(e,u)
.,_ e - 0+

.K

"),[r(e,u) +A] (2.4)
A EN(o) 0 E(o,X)

- >0

and

T CK(u) lim inf r(e,u')

e-0
+

= [r(e,u') +A] (2.5)
A N(O) B f N(u) u't  K B

A> 0 (,X)

where N(O) and N(u) denote collections of neighborhoods of 0

and u, respectively.

To visualize C K(u) and TK (u), we note that for KCIRN

"- i:-.-. CK(u) [ v " R 13 eDk 
-  _0+  k

such that u+ k v "K} (2.6)k Yk

%N
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TK(u) {v (RN Vak "0 , uk U,

u f K,] v k - v with uk + ek Vk K} (2.7)

A two-dimensional case is illustrated in Fig.2.1. Suppose u

terminates at a cusp in a non-convex set K , as shown. The entire

plane can be represented as the union of four cones with vertex

u: BOD, DOC, COA, and AOB, with 0 the terminix of u . Clearly, for

any point v inside the cone BOD U DOC U COA, it is always possible

to find a sequence of positive numbers e k } such that u + ek v k  K

of any sequence vk - v . Outside of this cone (interior to AOB), it

is impossible to find { k for which u + k vk K. Hence,

C (u) BOD U DOC U AOB
K-

Similarly, pick a sequence uk u where uk is a sequence of

vectors tracing out the arc EO on K . The legitimate vectors v

with sequences vk V such that uk + kv kEK as e 0 will

be those in the half space BOD U DOC . Similarly, for uk approach-

ing u along FO, we must choose v in DOC U COA . All other se-

quences uk E K, Uk- u yield acceptable v in either of these

half spaces. Thus, T (u) must represent the intersection:
K-

T (u) DOC
K.

If K is convex, then

T Cu)- C (u)
KU )  K(U

• .' "r ." ,: % -. s-. " ..% - ". ', - , -. . .V - , . - . - . -- " -. ' .- . . .- -. - _ . .. . , .. ." .. " I
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2.1.2 Normal Cone

For KC V, K 0 , the normal cone to K at u is a subset

of the dual space V* defined hy

NK (u) fu* C V*I<u*,v> < Q Vv E TK(U)} :2.81

In two dimensions, NKCU) consists of the vectors through u

which make obtuse angles with the vectors in TK (u) , as shown in

Fig. 2.2.

2.1.3 CUak-Roc.kafz6ettan Veate

Let F be any extended real-valued function defined on V and

Slet F be finite at a point u f V . Then various types of subde-

rivatives of F at u can he defined as follows.

Upper Subdevaive, The upper subderivative of F at u

in direction v is defined as

DtF(u;vl Lim sup inf l[F(u'+6v')-c] (2.9)
Cu',a)4.(u,F(juY),v' -v

0- 0+

The notation Lim sup inf is defined in the Appendix, and by the no-

tation

i '.:' q/ (u',Ct) 4.(u,F(u))

we signify the convergence of a sequence (u',Ct) E epi F to a point

-- on the graph of F

I-

i..'. . . . .

i .. i .iA'AJ
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* Figure 2.2 Normal and tangent cones at points of a set K.
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Cu'~O 'a Cu,FCu11<=>(u'c 'al (u,iF(u)) ,

CL > F(.u')

11 F is 1,s.c. Clower semicontinuous) at u ,then (2.8) re-

duces to

D tF(u;v) =Lim sup inf -F(u +ev' )-F(u')) (.0
(Ut,F(ut) -~(u,F(u)1 vt1, v (.0

LoweAr Sttbde~ivuatie. The lower subderivative of F at u

in direction v is defined by

D F Cu, v) = Lim inf sup I 1F W + Ev') -a] (2.11)
(u',a) t (u.FC~u)l, v'~v

0+-

with

(u',a) t (u,F(u))<=>(u' ,c) *(u,F(u))

a < u'

If F is u.s.c. at u

D F(u;v) =Lim inf sup -[F(u' +ev')-F(u') 1(2.12)

(u',F~u'l - (,* )) '

The derivatives DtF(m;v), D' F(u;v) are referred to here as Clarke-

Rockafellar derivatives (or C/R-derivatives for brevity).

To help understand the meaning of the C/R-derivatives, we con-

sider the two examples shown in Figs.2.3 and 2.4.
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Example 1. Let f and f denote the real-valued functions,

f (W (~ 4X4X<
21/ + Zx -1/2 > >1

and

f (X) =tX:,-4x+l1 x < 1

2 _x2 /2+ 2x + 3/2 ,x > 1

As we observe in Fig. 2.3, f x is continuous at .:=1 but non-

differentiable in classical sense and f 2 W is discontinuous but

lower semicontinuous at x I Since these functions are defined

on R the definition of C/R-derivatives reduces to

Dtf~x~= lim sup -[~'+B) Fx)

Cx',f(x')l (Xtf(x)) -[~'+e)-Fx)
e o+

and

D1tf~x;y) = lim inf !-[F~x' + By) -F~x')]

Cx',f(x')) -~(x~f(x)) e
0+-

Around x =1 ,we have two subsequences of derivatives with y=1

which converges to 1 and -2 for both f and f and we easily
1 2

conclude that

Dtf (l;1) =1 (="supfl,-21")

Dtf (1;1) =1

A. IL..LA2A'It p
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-f W

f(x)

4 pf1 (lfllt) epi D (I y)

" D'f ( I ; l) I

"N I D Of( I; ) - 2

,0 I

/"

F u 2. T u (o)

a/

/I f(

1 I

'Q" I

..'-,"Figure 2.3 The upper (lower) subderivatives of (a) continuous but' "' nondifferentiable and (b) discontinuous at x = 1.

.0

,. ,- - ' i , ,.l , i , . - .- i . . - .. . i i
S' ' " " ' " - i, ..--.-. .. ., . - - . . - . ,. . .. .. , -.
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D4f 1(1;I) = -2

D4 f2 (l;l) = -2

We remark that the convergence (x',) 4 (x,f(x)) in the definition

of C/R-derivatives (2.8) and the definition of tangent cone (2.2)

lead to the fact that the epigraph of the function y - Dtf(x;y) is

the tangent cone Tep i f (x,f(x)) which is shown in Fig. 2.3a

Example 2. A better example of C/R-derivatives can be construc-

2
ted in R . Consider the lower semicontinuous function f = f(x,y)

shown in Fig.2.4. The numbers indicated in the figure are intended

to mean the following:

- The slope of line GH at G in the direction v = (1,0) is +0.5

. The slope of line EF at F in the direction v = (1,0) is -0.5

• The slope of line CD at C in the direction v = (1,0) is -0.8

- The slope of line AB at B in the direction v = (1.0) is +0.2

Let us calculate C/R-derivative at the origin u (0,0) with dir-

e ection v (1,0). Recall that

Dtf((O,O);(,0)) = Lim sup inf
(u',F(u')) - ((0,0),f(0,0)) v'-v!.' ,"~ 8 -0+ ~ ~

,' .(f (u , + v ')-f (u ') }

Along the direction of v - (1,0) , we choose two sequences approach-

ing u (0,0) from either positive or negative x-axis:

71
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Lim inf Df(u',v') taken from the positive side of x-axis will be a

sequence of slopes along EF and Lir inf Df(u',v') taken from the
Vv "+V

negative side of x-axis will be the slopes along DC, where Df(u',v')

-f(u' + 8v') - f(u')]. Next we take lIm sup
(u',f(u')) + ((O,O),f(O,0))

of the sequences of slopes and then finally the slope at F along the

curve EF as Dtf((O,0);(l,0)). Similarly, we can get

D' f((OO);(1)0)) = the slope at B along AB.

Quantitatively

Dtf((0,0);(l,0)) - -.5

and

D4f ((0,0);(1,0)) = +.2 *1
2.1.4 Genera.ized Subdi46fetentia z

The subdifferential aF(u) of a function F at u is a well known

concept in convex analysis (see e.g., EKERLAND and TEMAM [1976] or

ODEN [1985]). By using the subderivatives defined in (2.8) and (2.10),

we define the generalized subdifferential of F:V IR, at a point u

where F(u) is finite, as the set

N F(u) - {u*( V*I <u*,v> <D+F(u;v) Vvf V} (2.13)

Now we list two useful theorems due to ROCKAFELLAR [1980].

Theorem 2.1. Let F be any extended real-valued function on V,

and let u be any point at which F is finite. Then TF is a weak*-

cclosed convex subset of V* and'.

I U

-p

v . .. .,4 ; . , " .: .. " - - . . .- - .' . . .-. - . . , " .' - . - -. ' . - . - " .. " , . . .. . . . - - - . .
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3F(u) f u* fV* Nul Nei(u, F (u) (2.14)

If D+F(u;O) =-,then TF(u) is empty, but otherwise F(u) is

nonempty and

DtF(u;v) =sup {#u*,v> Iu* f 7F(u))for all v V (2.15)

Theorem 2.2.. If F is a convex function on V, then 'OF(u) agrees

with the subgradient set in the sense of convex analysis:

_DF(u) - F(u)

- tu* f V* < u*,v) < F'(u;v),Vv EV)

(2.16)
-{u*f V* 4(v-u,v*>.l F(u)-F(u) V v EV)I

Here F'(u;v) - ha (F(u+tv) - F(u))/t is called the one-sided direc-

tional derivative which exists for all v when F is convex (although it

may be infinite).

Remark. If F(u) is a characteristic function with respect to

a set K, i.e., if

0 fuE K

F(u) - K(u)

then

aF (u) f u*E V*l <u*, v)< D YK (u;v) V v C V}I (2.17)

N K(u)

This fact can be more easily visualized in the case of convex F, i.e.,

.. . ..
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;kb (u) = {u*E V* Iu*, v-u>

< 1LK (v) -K(u), V v K}

I {u* E V* (u*, v-u) < 0,v K}

SN K (u)

,1 since 'K(v) = K(u) = 0.

2.2 Mechanical Preliminaries

2.2.1 CLa6ic.a Con-tinuum PO6tLicLty

Classical plasticity theory rests on the assumption of the

existence of a convex function F I IR x R - [0,-- ) of the

stress tensor a, called the yield function of the material, which

has the property that plastic flow at a particle X of the material is

signaled whenever F(a 0K)) = 0 and -L :a' >0; otherwise the deformation

at X is elastic (where A:B = tr A B):

F(a(X)) <0

. < ~1 elastic deformation[,. . .. F(a~(X)) f  0 and- a <~ 2.

SFa (X))- 0 and a >0 0> plastic flow

The only stress states admissible in such theories are those for

which F(a) < 0 or, equivalently, those stresses which belong to the

convex set

K {a E IM F( a)< 0} (2.19)

In general, the yield function may itain several parameters

characterizing the state of material, but during 
plastic deformation

.
.

. . . . . .



0 25

these parameters are understood to change in such a way that F

remains equal to zero while plastic flow continues. These material

parameters will also be expected to vary with temperature or other

thermodynamic variables. The general yield condition relates only

to the state of stress at a material particle, and, irrespective

of whether the mechanical response is elastic or plastic, does not

depend on the stress gradients.

It is further assumed in the classical theory of plasticity

that yield is unaffected by hydrostatic stress, a situation generally

in accord with experiment for moderate stress levels. With this

assumption it is possible to represent the yield function for an

isotropic material as a function of the invariants of the stress

deviator in the form

-G F (J 1 (2.20)

Where the invariants

- 1/2 tr(' 1J det a' with a'-n a-1/3 tr a (2.21)

(More detailed discussions of representations of response functions

are given in Chapter IV.)

The infinitesimal strain tensor E is representable as the

sum of an elastic part e and a plastic strain E P, and its ti~r'e

rate-of-change is

*e + (2.22)
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It is meaningful to assume the existence of a plastic flow

potential : IM -R which is convex and l.s.c. and which has the

property that

" E 3 p(a) (2.23)

In particular, the indicator function lK of the set K may define a

specific flow potential as follows:

iK(a) = CO if OK (2.24)

Note that 4K is l.s.c. on IM and that OK is convex if F is convex.

From (2.23) and the definition of the subdifferential

E K o) (2.25)

for some particular stress a, and this implies that

, >>O0 V0"'K (2.26)

This result, of course, is the classical normality condition which

extablishes that the strain rate is normal to the yield surface or

lies in the normal cone of the yield surface at corners. (See Fig.

2.5).

2.2.2 MicAomechanicat PLcutictyt.

It is now a well-known fact that the permanent deformation of

crystalline material is caused by microscopic defects in the

crystalline structures. A brief review of some features of these

underlying physical phenomena is useful at this point. For a

, ' . . , *, - .' - " . .- S ': . ..2 1 2 2 , -. " ., 2 ,
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detailed treatment, COTTRELL [1958], WEERTMAN and WEERTMAN [19641,

and LARDNER [1974] can be consulted.

When most materials solidify from a melt, the constituent atoms

arrange themselves in a highly regular periodic array called a

crystal. They do this simply because the total energy, kinetic and

potential, of the individual atoms, is less when the atoms are

arranged in a coordinated manner than when they are randomly

distributed. This energy minimum changes for different atomic

constituents, so that the stable crystal structure formed during

solidification vary for each material. The exact nature of the

structure is determined by the strength and directionality of the

interatomic forces.

A high degree of geometrical perfection in crystals is rarely

found in either natural or synthetic crystals. In all real

*materials, crystals contain a small number of atomic irregular-

ities or imperfections which do little to change the normal atomic

arrangement but play an important role in modifying its physical

properties. The defects of most importance in determining physical

behavior are dislocations, point defects, and the structure of grain
.=o'-

and phase boundaries.

The dislocations act as the carriers of plastic deformation

through the motion of slip, and produce most of the noticeable changes

of the internal mechanical state during the deformation. Point

-°.
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defects, such as vacancies and solute atoms of a different species

usually introduce a strong viscous effect into the deformation

behavior. Finally, the structure of the grain and phase boundaries

not only can increase the resistance against plastic flow but they

can also be additional sources of viscous behavior.

For a perfect single crystalline material, one would expect

elastic-perfectly-plastic response because when the shearing stress

reaches some critical value it causes a continuous slipping motion as

there are no obstacles which may interrupt or stop the shearing motion.

But, as mentioned earlier, most materials do have barriers like

grain boundaries, Frank networks, stationary substructures, etc. To

break these barriers, the critical stress (or, phenomenologically, the

yield stress) must be attained. This increased stress produces more

barriers and again, an increased stress is required to break dis-

location barriers, and so on. This phenomenon is called work-

hardening.

Generally, in single crystalline models, we have four distinzt

stages in the stress-strain curve,as seen in Fig. 2.6. After an

elastic stage, one often observes an "easy-glide" stage (Stage I in

the figure) during which all the free (mobile) dislocations move and

a large amount of plastic strain is realized. Stage II is called the

work-hardening stage, and unit dislocations are generated from, say,

Frank-Read sources and ii,teractions between dislocations making

barriers like Lomer-Cottrell locks. In Stage III, breakdowns of

-i- . . .. - . - . ----- . . . . . . - - . - i
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-* these barriers may occur, giving very low hardening with some plastic

strain. For more detailed descriptions of these concepts see

DIETER [1976] or WILKOV [1983].

In polycrystalline materials, the easy glide stage is not

observed as frequently as in the single crystal since the movements of

dislocations are stopped more readily by a large density of built-in

obstacles due to the nature of the grain boundaries. Therefore the

usual stress-strain curve (Fig. 2.7), i.e., a linear elastic region

and a strain hardening region, is obtained. In fact, the easy glide

stage is included in the elastic region since the flow of dislocation

and plastic strains are ignorable.

2.2.3 Int.enat State VariabZ

From the previous section, we recognize that changes of

internal structures in materials causes permanent deformations. A

key question is how can one utilize this micromechanical information

* "in formulating a continuum theory of elasto-plasticity. One approach,

which has provided for some progress toward a general theory, involves

the use of continuum theories which employ "hidden variables" or

"internal state variables" as a measure of physical changes in the

microstructure. Some of these changes can be those ordinarily

. associated with plastic deformation. These so-called internal state

variables can provide measures of slip rearrangements of crystall-

ographic planes through dislocation motions, inelastic behavior

- -



32

INI

cv, co0 C) J0 I I

cu

L. >Al

cn



33

arising from twinning in crystals, grain boundary sliding, and

stress-induced phase transformations.

The idea of developing a continuum theory of thermodynamics

using internal state variables was actually proposed by MEIXNER

[1953] and independently by BIOT [1954]. A general thermomechanical

theory of materials with internal state variables was developed by

COLEMAN and GURTIN [1967] and used in attempts by PERZYNA [1963],

PERZYNA and WOJNO [1968], ODEN and BHANDARI 11973], KRONER 11962],

KRONER and TEODOSIU [1974], RICE 11971, 1975] and others to develop

a plasticity theory. Among the advantages of such an approach are

that it simplifies the modeling of history effects in elastic-plastic

*materials since they are, in essence, accounted for by an evolution

equation for the internal state variables. There are three categories

of classifications of internal state variables.

The first employs the classical theory of elastoplasticity and

its variations, e.g., MROZ [1973, 19811 and NECAS and HLAVACEK [1981].

In this approach, the hardness variables in the flow theory and the

back stress in the kinematic hardening are the internal state variables.

In the second approach,a direct application of micromechanical

structure is modeled, e~g., KRONER [1962], KRONER and TEODOSIL' [1974],

RICE [1971], ACHENBACH, MULLER and WILMAkSKI [1981] and WENG [1980,

1981] Various measures of dislocation density, degree of ipuritv,

and twinning modes can be identified as internal state variables.

°
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The third approach employs a combination of the ideas of internal

state variables and the phenomenological behavior as derived from

experiments, e.g., HART [1976, 19791, BODNER and PARTOM [1972,

19751, etc. This approach combines features of the other two. More

complex constitutive equations with more variables which are drawn

from the phenomenological results are involved. A simple version in

this category may be an elastoplasticity theory (ARAVAS 11985]) with

micro-void implementation in which a classical yield function (or

flow potential), e.g., von Mises, is modified by introducing the

volume fraction of micro-voids in the material. This particular theory,

which may find rare applications for engineering materials undergoing

large deformations (see FUNG, BURNS and LIND [1973]), results in a

pressure dependent plasticity theory which may be capable of modeling

a class of porous materials. Later we utilize this third approach

in an application of the theory of Materials of Type N.

-*1
,<,. ? ,,.,:-.,.. ... ..• . ,/.. . _ ,. ,, ,. . ..,,: .. , .. .- ... .. . . . .. .. . ..
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Inti hpe, eea otiumter.s eeoe o

In amthrais cheriatenal contr:ium the "irdecveope"o

par hyoftheicalclaso of material whichcundero lag lasic

3.1le KineaicalgCnsideationsteia in iit Deformanstrs

state a~ at a particle X is subjected to motions which carry

the stress at this particle through a history which eventually

returns the stress to the original state a If, at the conclusion

of this stress cycle, the local state of deformation at X, however

* one chooses to measure it, differs from what it was before the

stress cycle, then a portion of the deformation was not "recoveredt

and this is dubbed the "plastic" deformation. It is clear t hat

these ideas are local in character; they may have meaning only

in a local neighborhood of a material particle or for bodies

in states of hormogeneous deformation. Having these ideas in our

mind, we offer in this section alternative decompositions of

-35-
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the deformaton gradient to the multiplicative and the additive

ones proposed by LEE [1969, 1981] and NEMAT-NASSER [1979, 19821,

respectively.

Let us consider the motion of material body B relative

Nto a fixed configuration C0 C IR (N < 3), which is defined

Nby the map K0; B - IR , X = Ko(X), where X is a material particle.

The spatial position x of a particle X at time t is then given

by a relation of the type

X = x(X, t) (3.1)

with X E K0 (B), t > 0, and X a continuous invertible map from

C into IR N . The deformation gradient tensor F at X at time

t is defined by
ax

F a -- (3.2)

Let N (X) denote a small material neighborhood of particle

X. The motion of the body carries N (X) from the reference

configuration C0 to the current configuration C . Let the Cauchy

stress a at any particle A 6 N (X) in C be denoted o(A, 0) with

o(A, 0) = o0(X) + 4.(<6X) VAC N (X)

where AX = A- X. If a is continuous at X, then

lirm Li x. = 0

* denotes the Euclidean norms. We shall refer to a0(X) as

the initial stress at particle X. For - .plicity, we omit other

variables (such as temperature, etc.) that could also be listed

in defining the "initial state" of the material.

"..
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During an interval of time [0,t], t > 0, the stress at

particles in N (X) are part of the stress history

H (A) {o(A, T)I A EN (X), 0 < T < t}

and the configurations of N(X) are denoted x( N (X), r ),

0 < T < t.

In addition to the actual stress history Ht, we consider

any stress history HR, corresponding to a relaxation of the

stress at X, such that

R RH t(A) C H t(A), H t H0

where H is the family of all stress histories terminating

00

NFor p the values of a continuous map of N (X) into IR

we denote by C any configuration of B for which the stress

history at A ( N (M) is H R(A). Thus, the introduction of a

(possibly unattained) configuration C provides for the familiar
p

device of comparing the geometries of the body in Cp with C

to define plastic deformation. A typical illustration of this

is given in Fig. 3.1, wherein N (X) is shown in C0, C and
0 t'

C together with differential vectors dX, dx, and dp [cf. LEE
p

[1981, p. 862]].

We shall now proceed to construct decompositions of the

total deformation into elastic and plastic parts.

• *.* .. *.
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3.1.1 NEMAT-NASSER'4 DecomposiLion

* We first consider NEMAT-NASSER's additive decomposition

which can be obtained by manipulation of a displacement field

as follows [cf., NEMAT-NASSER [1979, p. 166]]:

dx -dX (F- I)dX du (3.3)

dp - dX - (Fp - I)dX - dup  (3.4)

If we demand that a single-valued displacement field must be

realized in reaching the current configuration, we are led to

a definition of an elastic deformation gradient given by

[u(X) + dul - [u(X) + dup ] = (Fe - I)dX (3.5)

We next use equations (3.3),(3.4) and (3.5) to eliminate du and

dup and obtain

F = Fe + F- I (3.6)

In other words,

FedX - (du - dup + dX) (3.7)

and

FPdX = dp f (dup + dX) (3.8)

Since the material derivative of x is defined by xf=x(x,t)/Dt=u,

L = - = a.. x af FF- (3.9)[ ~ ;x -at -at\ / :: .

and, from equation (3.6)

.Fe +F (3.10)

" * We have

L = FeF-I + FPF -  = Le + Lp  (3.11)

,'Ill
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Finally, the symmetric part of L is given by the sum,

D (L + LT  (L' + eT LpT) (3.12)

=De + D
p

where De FeF-sI DP = FPF- (3.13)
- Isym.- tsym*

and sym denotes the symmetric part of the tensor.

3.1.2 LEE',6 VecompoiZtion

Lee's decomposition starts "from the chain rule" [see LUBARDA

and LEE [1981, p.4]:

F = ax= x FeFp (3.14)
a X p X - -

Then, by using equations (3.11) and (3.14),

F = (F
p + FeP)FP- Fe-

1

- FeF + FpFP Fel (3.15)

= Le + peEppe-i

We recognize from (3.5) that the rate-of-strain measure D could

not be decomposed additively, as Lee noted. In metals, elastic

* strain rates may be small, and equation (3.12) can be approximated

by

[, Z Ee + Ep and D =e + 5p (3.16)

But this additive decomposition is, in general, invalid for the

(perhaps unusual) case of finite elastic deformations.
S...

Although we want a strain rate which is independent of the

* rotation effects, the previous decompositions do not render a full

. .. .
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stretch-dependent strain rate since, e.g., D= FF 1  y and F

contains the rotation effect as F = RU = VR. Furthermore, the previous

decompositions pose a question about the conceptual validity of

the differential operation dp/dx. This fact may generate an overdeter-

mined system of equations. The determinacy of a system of elasto-

plastic equations will be discussed in a later section of this

chapter after all the field equations and the constitutive equations-

are established through the theory of materials of type N.

To cure the difficulties mentioned above, we will search for

new kinematical variables.

3.1.3 AtteAnative Deompozit.on Method,6

Consider again a particle A in the neighborhood N(X) of x,

in the reference configuration (see Fig. 3.2 or Fig. 3.3). The

position vector of point A relative to the origin of the fixed

spatial reference frame is denoted

OA X + AXCO 0

According to the polar decomposition theorem (see e.g. GURTIN

[1981]), the deformation gradient F can be represented as the composi-

tion,

F = RU = VR (3.17)

where R is a positive definite orthogonal rotation tensor, U is

the right stretch tensor of F, and V is the left stretch tensor of F.

. ..-. ,
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A) Right Polar Decomposition

The location of A in the rutation free currinmt c:,nfiguration

C t-as in Fig. 3.2, is

- T

OAC +R &lx X(X,t) + U(X,t )tLx W1 (X, t, L~X)

where

lrn 1~ W (,t , AX)I 0 (3.19)

Now let us consider an intermediate configuration C which

may correspond to a "rotation free" state at the initial stress

level a. Then,

OA =X(X,t) + Up(X,t)AX + W(It, AX) (3.20)
C -_ 2 .

and W has the same asymptotic behavior with respect to IILXII as-2

does W.I

We next introduce a second order tensor Uwhich represents

the elastic stretch tensor and is defined by

U~ (XOAtX a O A O Ac

[U(X~t) -UP(Xlt)]AX

+ W (X, t, AX) - M2 X t, AX)

* (3.21)

Thus, in the limit as JAXI *0, we have

= e +UP-1 (3.22)

L% -7 .
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and the relations (3.17) and k3.ll) give

F=RU RUe + RUp R (3.23)

L = F F-

R RT + R(U eU-  + UPu-I)R T  (3.24)

Therefore, De and Dp can be obtained as

De , R Ue U-1 RTi (3.25)
- sym

DP = R UP U-1 RT I (3.26)
* - sym

B) Left Polar Decomposition

The left pc~ar decomposition cannot be constructed as easily

and simply as the right, but a formal manipulation of the key tensors

is still possible. In this case, the material is first rotated

S. as in Fig. 3.3. Therefore, the location of A in the rotated reference

configuration CO+ is

OA X +R AX (3.27)

whereas the locations of A in the current configuration C and in
t

the rotated stress-free configuration C are." P+

OAC . x
t

= x(X,t) + V(X,t)RLX + W (X, t. AX)

(3.28)

and

OA = x(X,t) + VP(X, t)RAX + W(X, t AX) (3.29)

- ,+-. . ."



.wvr

44

N j

Fiue33Cofgr"
0  ytefXt) poard"-poii

0

'.!

N M

P/P

-'.. 
'..

0

, ~Figure 3.3 Configurations by the left Polar decomposition.- i

V!



*

*" 46

Here W3 and W4 have the same asymptotic property as do W and W2.

In a way similar to (3.21), a second-order elastic (left)

stretch tensor Ve is defined by

ve (X, t)RAX - RAX = OC - OA
- ..- -. C Ct p+

= [V(X, t) - VP(x, t)IRAX

+ W (X, t, AX) -W (X, t, AX)

, (3.30)

And IAXII * 0 gives

V = Ve + VP - 1 (3.31)

or

F =VR = Ve R + Vp R R (3.32)

Finally, from the definitions of L and D,

L = F-1

~e 1- +V Vp I.VRT VI
= V e V I  V p V -l + V R RT V -

-Ve V -I  .. I + g(Ve R) + g2 (Vp, R)

(3.33)

where, for example,

eR)e T- 1 _ .P, T.-I T -l1
R) = Ve R R V and g2(V p  R) - vPR Rv - R R V

(3.34)

-0 Then one could define,

De = (Ve V-i + gl(Ve, R))s (3.35)
"" " " " sym
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and

D (Ve V-l + g2(VP R))I (3.36)

It is noted here that unlike NEMAT-NASSER [1979, 1982] or

LEE [1969, 1981], neither Ve nor Vp need be a function of the gradient

of an "elastic" or "plastic" displacement or position vector field.

However, if u is the particle displacement field, we always have,

F = 1 + Vu (3.37)

It has recently been pointed out to us that our decomposition

through (3.17) is similar to that proposed by SIMO and MARSDEN [1984].

3.2 Materials of Type N

The thermomechanical behavior of the body is governed by the

principles of conservations of mass and energy, balances of the

linear and the angular momenta, and the law of entropy production.

Local forms of these principles can be written as follows:

"Conservatiun of Mass

p det F = p0  (3.38)

' Balance of Linear and Angular Momenta

div a + p b = x (3.39)

a OT (3.40)

'Conservation of Energy

= (G:L) - div q + pr (3.41)

,1

*~ q1
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*Clausius - Duhem Inequality

q r
n + div - - > 0 (3.42)

Here P is the mass density, P0 the mass density in the reference

configuration, a is the Cauchy Stress, b the body force per unit

mass, E the specific internal energy, q the heat flux vector, r

the heat supply per unit mass per unit time, n the specific

entropy, and 6 the absolute temperature.

It is customary to introduce the free energy density function

in.rpad of the internal energy density € by

, = E- n(3.43)

Now we are at the place to define a general class of materials

which satisfies certain properties.

Let us first introduce sets S C IR3 x ]R3 , A C ]R3 x IR 3

and W = S x A.

A material is said to be of Type N if and only if it is

characterized by constitutive equations,

. = € (E,O,g,a)

= a (E,eg,a)
(3.44)

n= N (E,e,g,a)

q = . (E,eg,a)

and there exists a potential *:W * ( Which has a nonempty

generalized subdifferential such that

( . . . . . . . . . . . ..A), (A) .. ,(3.45)

°5 . 7,"
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Here g - grad 8 and is a tensor referred to as an internal state

variable. The elastic strain measure E and the plastic strain

measure P were used without specific relations with the kinematical

variables. We will investigate these for all four cases which

were introduced in Section 3.1.

From the result (2.13), the relation (3.45) implies the

inequality

< p.G* s+ <- ,, _, , <

( W (3.46)

Where <.,.>S and <.,.>A denote duality paring on S* x S and

A* x A, respectively.

Geometrically, we have the normality (hence, Type N) condition,
((P, -c), -1) E N . [(o,A), W(o,A)] (3.47)

-a), epiO - .

This relation is illustrated graphically in Fig. 3.4 with

U-- (o,A) and F J.

Furthermore, if the potential i is differentiable at (oA).

then N at (a,A) has a single element. So,
epiip

or

an (3.48)

and

.. . . . . . . . . . . *

- \ * .- . - . . . .-. .. -9 2, !
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F(U)

,epF

Npi (U2 7(U,))

U

6aiF U F()

Figure 3.4 Normal cones at u1 in convex neighborhood and
Uin non-convex neighborhood.

02

- . -.. . . - - . . - -.- . .. - - - - --,
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We remark that if ip is convex and l.s.c., the materials of

Type N reduce to the generalized materials introduced by HALPHEN

and NGUYEN [19751 that is, from Theorem 2.2,

~p~o,) = ap~aA

or

KP~o... + <-&,A*-A) .c

V(a*, A*) EW(3.49)

Eliminating r between (3.41) and(3.42), and taking into

account (3.43), we obtain

11

Assume that the map: (E, 6,g,a) .. *,) is C 1in

each argument. Then the rate of change of the free energy can be

expanded by

o LO: + LO + LO. + LO c (3.51)
aE H ag aa

Where the inner product notations ":and ."for tensors (2nd order)

*and vectors mean that

TA:B =tr(A B) Z A B. and a.b Z a.b.
-- -- . ij ii j1

1,j

Putting (3.51) into 3.50) gives

p:L OA~ + Ml B P g.

ac V > 0 (3.52)
.4pq .4a
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Ncticing that none of the constitutive variables in the assump-

tion of materials of Type N are functions of 8and g, we can vary

the variables 8, g without changing the other variables. Then we

will obtain the following equalities

n -N(E,6,ggct) - _(3.53)

0 30 (3.54)
0- a

and ensuing inequality

1
a: L pi E + A -- q ve >0 (3.55)

where A*

Equation (3.54) implies that 40 is independent of the temperature

gradient ve and so is the specific entropy rn*

We notice here that we need to know the relations among L,

E and P to obtain more restrictions from the inequality (3.55).

3.2.1 Ca,6e I

We first apply the kinemiatical definition of NEM'AT-NASSER,

i.e., from (3.13)

t 1
E f ym

FF ispF dt (3.56)

0 tl

s..
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Then

C:L = O:D = O:(i + )

and the inequality

(a .. P it.) i E c: +A a q q e> 0 (.8
DE -I ~ + : 1 - e

gives one more restriction

a IP a (3.59)

* * and inequality

+ A -V6> 0(3.60)

*where the thermodynamic force A, which is designed to be conjugate

variable to the internal state variables, is defined by

A = (3.61)

3.2.2 Ca~e 11

The result (3.15) of LEE's decomposition gives

fE Fe Fe sym d t (3.62)
0

ft e F 1  -e-1 (3 63P =PF (.3
0 sym

*In a similar way, we get

3E= (3.64)
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and

a I + A: a - qV8 > 0 (3.65)

REMARK: The definition of plastic strain (3.63) may lead to some

difficulties,as noted by NEMAT-NASSER [1979, 1981]. Since (3.63)

contains tensor Fe which represents the elastic deformation, there

arises the question as to whether or not PII really represents
-'.,

the plastic deformation. Furthermore, the definition Fe which is

used to define the elastic strain (3.62) contains effects from the

intermediate plastic configuration Cp as in Fig. 3.1. Here we assume

that we can vary the variables E and P independently. When we

have a deformation where significant couping between E and P exists,

(3.64) and(3.65) may be invalid.DI

3.2.3 Cue Ill

From (3.25)and (3.26) we define strains by

E I dt (3.66)

-- Isym
0

t
PI= Pu- lsy dt (3.67)

0

then

RT T
D=R R +R R (3.68)

I- - .II.. - - .II" -

............................................ . ..'. .;,,. . "...-.*, *.- .-"--- - . ." ' * ._ .:* ....-,. ..... .- .. .. ,*....... _ , * .,.."- _ -. .. . . . .,i -L . . -.. ,; . . ,. . . . .
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7. Substituting (3.68) into (3.55) gives

(RoR- ) * + RTo R:;

+ A 1q-V > 0 (3.69)

Here we rename RT aR f S and we call S Dienes stress since it has

appeared in the the work by DIENS [1979].

By the way, from (3.69) we get

S E AOll I  (3.70)_,
-.III

and
1"

S'; +A:a- q V e > 0 (3.71)

4

REMARK: Kinematically, Dienes stress S has a special meaning. Since

S is defined as a reverse rotation of Cauchy stress a, it is the

stress in the configuration C t - in Fig. 3.2. The configuration C t -

is designed to be a rotation-free configuration. Therefore, variables

U, S and etc. in C - are rotation free and we are able to obtain a

materially objective stress rate. This issue has prorrpted many

discussions of appropriate measures of stress rate (see, e.g. DIENES

[1979], NAGTEGAAL and DeJONG 11982], ATLURI [1980, 1983] and LEE

and BERTHEIMER[ 19831 ).Zl

From the definition

"-" RT
=S R o R (3.72)

g-I
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we have

T * T T
SR. R + R + R + R a

SRT(; iRT  a+ a R )R (3.73)

since

RR T  1 => RR T  
- T (3.74)

Then an objective rate of the Cauchy stress a is

o R S R a - w a + a &J (3.75)

T
where w RR

- Notice that a is a stress rate in the configuration Ct and S

is a stress rate in Ct in the Fig. 3.2.

3.2.4 Ca.e IV

From (3.35) and (3.361, we could define a set of strain measures,

fIV _ jt ( -qV4 + g(e , R))Isym dt (3.76)
0

y v o 1v-1 + R(vP , R Isym dt (3.77)

0

Then, from (3.55), we get

a ". (3.78)
-E IV

01
and

G:P +A a- Ve >0 (3.79)

. .. •* . . . *
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3.3 Evaluations of Various Strain Measures

Up to now, four sets of system of equations according to four

kinematical definitions have been proposed. In this section we

*evaluate all of these cases and choose a strain measure which is

both physically sound and convenient.

* K. 3.3.1 Vettnwiracy o6 Gove~ning Eqciatonz

Ignoring thermal effects explicitly, we again list the following

equations:

i) Field equations

p det F - P (3.80)

div a + p b = p x , CY= G (3.81)

ii) Constitutive equations

From (3.48), the plastic constitutive equations

(3.82)

0" -(3.83)

and the elastic constitative equation (one among (3.59),(3.64),

(3.70) and (3.78))

a (or S) p (8

and definition

A=- (3.85)
Uaa

. . - - . . . ]
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iii) Kinematical relations

F (3.86)
- ax

Case I:

F =Fe + F" (3.87)

F ax (3.88)

(3.56)

(3.57)

Case II:

F = Fe p~ (3.89)

(3.87)

(3.62)

(3.631

Case III:

F - R U(3.90)

Ty =U e up(3.91)L(3.66)
(3.67)

Case IV:

F V R(3.92)

JVVe+ VP -1 (3.93)

(3.76)

((3.77)
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The total number of unknowns and the total number of equations

are listed in Tables 3.1 and 3.2 for all four cases.

The first and the second cases give 3 more equations than

unknowns, i.e., overdetermined systems of equations are obtained.

Generally, we cannot solve an over determined system of equations

like these. So we must find the way to eliminate the extra 3

equations. It is noted that the 3 extra equations result from

the introduction of the variable P which may not be a single valued

function. But in the first two decompositions, we have assumed

that the operation dp/dx is valid, and this implies a compatibility

condition is fulfilled.

The third and the fourth decompositions furnish well determined

systems of equations. But the fourth case Becomes very complicated

• since the rotation effects are not explicitly removed.

In the following section, the actual differences of the

previously mentioned strain measures in the one dimensional

homogeneous deformation are analyzed.

3.3.2 Coacutation.6 o6 Eta..tic Strains

We now consider a one-dimensional case of homogeneous

deformation. The deformation gradients then reduce to stretch

tensors (there are no rotations). In this case, the Nemat-Nasser

decomposition reduces to the same representation as our right and

UV
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Table 3.1 Number of Unknowns

Variables Case 1 Case 2 Case 3 Case 4

p 1 1 1 1

F 9 9 9 9

a 6 6 6 6

P 6 6 6 6

E 6 6 6 6

CLa 9 9 9 9

A 9 9 9 9

F e 9

Fp9 9

F e 9

e6

Up 6

UP 6

Vp6

*x 3 3 3 3

p 3 3

R 3 3

*U 6 6

Total 70 70 70 70
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Table 3.2 Number of Equations

Equations Case 1 Case 2 Case 3 Case 4

3.80 1 1 1 1

3.81 3 3 3 3

3.82 6 6 6 6

3.83 9 9 9 9

3.84 6 6 6 6

3.85 9 9 9 9

3.86 9 9 9 9

3.87 9 9

3.88 9

3.56 6

3.57 6

3.89 9

3.62 6

3.63 6

3.90 9

3.91 6

3.66 6

3.67 6

3.92 9

3.93 6
3.6
3.76 6

Total 73 73 1 70 70
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left polar decompositions. For simplicity, we shall assume no

change in elastic properties during plastic deformation and that the

material is characterized by a bilinear Cauchy stress-engineering

strain relation of the type shown in Fig. 3.5a.

Under these assumptions, we establish as possible configurations

those shown in Fig. 3.5a. The reference, the current and the stress

free configurations are shown and were computed using the definitions

given earlier. An "elastic" configuration, which is merely another

intermediate configuration, is introduced for convenience for

calculating the Nemat-Nasser strain measures.

Here, we consider a specimen whose initial length is o and,

after a uniaxial homogeneous elastoplastic deformation due to a stress

loading of a, the specimen has elongated a length o.° as indicated
0

in Fig. 3.5b. Then an unloading causes the removal of the elastic

portion of the resulting total deformation, i.e.,

= -. e=
.. .. X OL X , 0 <  X < (3.94)

Ae a-> Ae =a
a x-Ae E E+a (3.95)

Therefore, we have
P = X X = EX(3.96)

, E+a E+O

e X (3.97)
L

-- *° _ .
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A6'

Einering strain 6-=(x-X)IX

(a)

1). Reference configuration (C 0

x

")Current configuration (C)
t

x= ax

3) Stress free configuration (C)
p

p= ax- aoX/(E+c)

4Elastic configuration (C)
e

em aaX/ (E+a)

(b)
Figure 3.5 (a) Bilinear stress-strain relation.

(b) Configurations in one dimensional deformation.
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Next, let us calculate Ax,Ap and Ae due to a small change in

a, so that the increments (or rates) of various deformation gradients

can be obtained:

x(.0 + &a) =ax + 100EX x

P(o + O) 'LX + 100AOX ( .+c)x aE+100&a X

E E+oo E-+c4A X

e(a + Ac) = X + E+a+A

Therefore

AX X =Ca+A) X (a) fQOAi (3.98)11 E

Ap = p(a a) - p(o)

X + 100A X (a-6a)x (3.99)
E+3 E E+a+Aac

Ae e(o+Ao) - e(c)

(C+Aa)X a -X (3.100)

We can now compare the measures of the two decomposition

schemes, which are different in this one dimensional deformation.

i) Nemat - Nasser's Measures

F . - = C (3.101)"

Fp ap a E (3.102)axciEo E4c

Fe -e 1+ a- (3. 103)
= --X .*E+0
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and

- F tt F (a+Aa)-F (ai)

Mte _(q+&o) ac
aX E+a+Aa aX FE a (3.104)

D at - FeAt F1

= AF e F-

E +A+ yo [1 +-OAC

I 1Ec 100a E6o 10 O~ 2 6c,
(E-Ia) (E+o+6a) aE oE

+ l 0E(Aa)
2  + 1C(6u)2 )

As tA * 0 and At *0,

D (E;-T(E lOaE + -E) (3.105)

a (ze2+ 100 Ea + 100a 2 ) (3.106)
a~E (E+' )

Similarly,

p a2... go O100a (0460) ax
AF ax E-+c E -E4o -AcaX (3.107)

and

TE+, (100E2 + l0OEa - cE) (3.108)
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ii) Lee's Measures

(0+60)x ac

F !-x-a

F a a

-e E +c
F E-~- (3.109)

and
AFe *e e ,O . e(,

a x(a+Aa) -

E~o~~a Eo M(3.110)
= E E E

-e -- e-1
D At F £tF

E+ a

And for Dp(or &Fp) we have same result (3.107) [or (3.108)].

Since the plastic strain measures in the previous two cases

are of same form, we now compare the elastic strain rates for various

situations. Table 3.3 shows the comparisons for various values of a

with fixed ratio of al/E =.001 and Table 3.4 shows the comparisons
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Table 3.3 Tabulation of proportional rates fora /E =.001

Prprtional DeED
rat E/ B a/

.2 1.4975 .999

.4 1.2477 .999

.8 1.1229 .999

1.0 1.0979 .999

1.5 1.0646 .999

2 1.0480 .999

3 1.0313 .999

4 1.0180 .999

5 1.0180 .999

Table 3.4 Tabulation of proportional rates for x =2

ProportinlDE.'E

c/Erate 1 a008 999

1 0~ 1.00048 .999999

1- 0~ 1.00048 .99999

10~ 1.0049 .9999

102 1.047 .999

10 1 5.37 .91

1 25.25 .5

...............
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for various values of a/E with a fixed value of a-2. In each Table,

the values of DeE/o are tabulated. In other words, De E/o= 1 means

that

EDe (or C-De ) (3.112)

3.3.3 Eva. xat.ion

It appears to be difficult to define deformation, as shown in

a convenient way that decompose into purely elastic and purely

*plastic parts even in one dimensional deformation as shown in

Section 3.3.2. However, this is not actually a necessity in a

meaningful theory, provided the constitutive equations for each

are formulated properly (NEMAT-NASSER [1982], SIMO and ORTIZ

[19851). A consideration that may be of some importance is

whether or not the particular decomposition lends itself to a

well-determined system of equations and to rotation effect-free

strain measures. This proves to be the case in the new formulations

given here. A positive feature of Nemat-Nasser's decomposition,

shared by our own right-polar decomposition, is that it does lend

itself to experimental verification because of the normalization

- - by total deformation gradient (or total stretch ) in deformations

e je- e ;e,-(e.g., D FF sym orD = u ) which may be easily measuredsIsym
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in controlled laboratory experiments.

From now on, we employ the following strain measures:

I.- be. -'md (3. 66)

P P- Isym d 
36)

0
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CHAPTER IV

REPRESENTATIONS OF FLOW POTENTIALS AND APPLICATIONS

4.1 Introduction

In Chapter 3, a theory of elastoplasticity was presented

that made use of the notion of generalized stress potentials for

deriving constitutive equations for the rate-of-plastic deformation

and the rate-of-change of an internal state variable. This theory

embodies many types of classical and non-classical plasticity

theories and does not require the existence of yield functions. Yield

functions can enter the theory, however, through the definition of flow

potentials, but these potentials need not be convex nor need they be

. differentiable in the usual sense.

. Specific forms of the free energy and flow potentials can be

easily derived for cases in which these are assumed to be isotropic

functionals of their arguments. Such isotropic function representa-

tions are by no means unduly restrictive, for we demonstrate that

*, they can be used to represent some anisotropic hardening rules.

We show that numerous special theories of finite elastoplasticity

and viscoplasticity that have been proposed in the literature can be

deduced from such representations as special cases.

-* An interesting by-product of some of these flow potential

representations arises because they do not specifically involve a

yield function, but rather model the evolution of microstructural

-70-

S,
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changes in elastoplastic and viscoplastic materials during various

programs of loading. As a result, by defining a yield stress as that

corresponding to a 0.2% residual strain (in a uniaxial test) in much

the same spirit as one defines it in an experimental program, we

can actually calculate yield surfaces for such materials. Some of

these mathematically produced yield surfaces are physically reasonable,

others are not.

When the representation of flow potential happens to be

determined by a given yield function, it is called an associative

flow rule; otherwise, it is called a non-associative flow rule.

Classical theories of plasticity are generally characterized by

associative flow rule (DRUCKER 1967] and PRAGER [19591, etc.);

while some authors (eg., ILYUSHIN [1960] and NEMAT-NASSER [1983])

have shown cases in which associative flow rules are inappropriate.

-" ILYUSHIN also put forth arguments against the normality rule

which arose from dropping the assumption that no change in elastic

properties takes place during plastic deformation. NEMAT-NASSER

introduced a notion of a "workless strain rate", which could

invalidate the usual normality rule in calculating the rate of

O stress-work in the isothermal processes.

Another approach was advocated by HART (1970, 1976, 19821

and BODNER and coworkers 11972, 1975, 1979, 1983], who proposed

S plastic constitutive relations which involve a set of internal

state variables, but not necessarily an explicit yield function.

w S

* . .- .

|... •
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Strain rate and rate-of-internal-state variables are independent

constitutive variables in such theories.

A general representation of flow potentials for initially
-d

isotropics materials with internal state variables was proposed

by (RATOCHVIL 11978] and KIM and ODEN (1985a].

J
4.2 Isotropic Functions I

We begin by reviewing some notions of isotropic functions.

Definition 2.1: Let IR x R be an orthogonal trans-

formation. A function T U. V, where U (orV) is one of the sets

{ 3 3 )3-
tIR, JR ,R x JR}, is said to be isotropic if

T*(x) = T(x*) V x u (4.1)

where * is defined by

i) B*= B, B IR

ii) B* QB V B JR

T ]R3 xR3
iii) B* QAQ ,VB JR xBR

Next we list the representation theorems for isotropic functions

without proof. (For proofs, see GURTIN [1982], LEIGH [ 1968] or

TRUESDELL and NOLL [1965]).

Let G be a subgroup of the symmetric second-order tensor group

and SA be the set of invariants of A, i.e.,

AA

= {tr At ,t
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Let I(G) be the set

I(G) = fl AG}
A' r d

Similarly, we denote

2 2 3 3
IAB {tr A, tr B. tr A tr B tr A tr B tr AB,

2 2 2 2tr A B , tr A B, tr A B2 }

and

I(G x G) = {1AB' A x B E G x G}

(1) Representation Theorem for Isotropic Scalar Functions

a) A function G IR is isotropic if there exists a

function I :(G) * ]R such that

O(A) = 0(1A) '7 A E G (4.2)
A'

b) A function ¢ G x G -I IR is isotropic if there exists

a function 0: 1(G x G) - IR such that

.(A, B) = p( B), VA x B G x 0 (43)

(2) Representation Theorems for Isotropic Tensor Functions

a) A tensor-valued function G ; G S is isotropic if

there exist scalar functions 0' 01 2 ; (G)- IR such that
%1 2

G(A) =0 ( A) 1 + i( A)A - 2 (
1 A)A2 V A G (4.4)

b) For isotropic linear tensor functions, the function G

S .. S is isotropic if there exist scalars V and X such that

1 G(A) = 2WA + X(tr A)l , V A 6S (4.5)

.- -- . .

' '- " • -" "" -" -" -" - ' " - ." " ". .- " """ " -' -' ' ... . .- '.-.. . . . . .. .. " -.-. ".. . .-.. . ., ".•"L ,."
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c) A tensor-valued function G G x G - S is isotropic

if there exist scalar functions i, i = 1,2,. .. ,8, :1 (G x G) IR

such that

G(A, B) = 2 1 + A + B + A + B (AB + BA)

2 2 2 2 ~ 2 2 2+ 06(A2B + BA) + 7 (AB + B A) + 48(A2B + B A)

V (A, B) E G x G (4.6)

It is worthwhile to mention the definition of an isotropic

material as opposed to an isotropic function to perceive relevancy.

An isotropic material particle is one such that for some

reference configuration Co, all rotations by the response functions

of the material are indiscernable (cf. WANG and TRUESDELL [19731).

In other words, the material is isotropic at particle p if every

proper orthogonal tensor is a symmetry transformation for the

response functions of the material (GURTIN [1981b], or for a slightly

different version see ERINGEN 11962, 1967]).

4.3 Representation of Flow Potential and Free Energy

From the theory of materials of type N, we obtained the plastic

strain-rate and the-rate-of-internal state variable, through relations

(3.45) and (3.48) respectively in the differential case, from the flow

potential. Next questions that arise are how one might obtain a spe-

cific flow potential for a given material and what might be considered

Sl

* . . .. * .. *- .2.!
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as general forms of flow potentials for certain classes of materials.

Towards this end, we shall first confine our attention to

materials characterized by isotropic functionals. The following

approach is similar to that of KRATOCHVIL [1978], although he did

not make use of the concept of flow potentials. We also mention

that DESAI et al. [1983] suggested the use of polynominal

expansions of flow potentials in terms of invariants of its

arguments.

From the equation (4.3), an isotropic representation of p(G,A )

is of the form,

,(A,A )= $(tr a,tr A , tr 2, tr A tr 3, tr A

tr aA , tr aA 2 tr a2 A , tr a 2 A ) (4.7)

It is occasionally convenient in classical plasticity theories

to decompose the tensors a, A into spherical and deviatoric parts,

a sl + S

A = hl + H

(4.8)

P= pl + P

-A l + A
*~

where s = tr a/3, h = tr A /3, p = tr P/3 and X - tr ot/3 . Then,

the expression (4.7) can be written by

.. ...
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A (.s, h, tr 2,rH 2, -r3 H3.trSH

trS~t t rr. trSHt

tr 9 H2  tr g2 H2 , tr g2H(4.9)

The following lesmma can be easily proved.

LEMMA 4.1: Let A and B be second order symmetric tensors and be

decomposed according to

a -trA/3 A A - al

b = tr B/3 , B - bl

then

aLtr 4 ) = 2
;A -3 dA 2

a (tr KB) 3 (tr jF)

;A 33A

atr(A (KB) + t(R-) 1 t XB

* atr( B)3i t (X2 ) 1t(B

2E)2-2

atr(A B 2 -2 + -E2 X, 2 -2 tr(E2 A 2
(A-B B A)-. tr(A g2)1

3 . A

When IP(aJ,A I is differentiable with respect to both arguments

at (aF,A ), by using equation and Lemma 4.1, ecnetals h

follow'ng theorem.

W - ..r
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THEOREM 4.1: If the representation of gJcT,A )is of the form

L of equation (4.9) and P w IR is differentiable at (aF,A ),then

0C. 1- 2. -2 + C 2 + (H+9)0! Cl 2 C3- 4

C ~ (4.10)

and

a~dl dH~S~d 2  g 2
0.l 1-. + 2 9+ 3-.+ 4 - -d 5 (H +§H)

-d(H2 + -2 H)(4.11)

where C 's and d 's are scalar valued functions of the invariants,

i.e., oA*

Proof: The chain rule, Lemma 3.1 and symmetries of S and H

suffice to prove the theorem.

A similar representation of the free energy 'P of the material

can also be introduced; e.g.,

E, 2 -3 3CE a (e, A tr -,tr A ,tr E ,tr Atr E A

tr ~A2  tr E'A, tr f2 l(4.12)

where E is given as a sum

E = el + Ewith e =-tr E

Fromi the relations (3.61) and (3.59) [or (3.64) or(3.70) or (3.78)], we

have
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Sk0 + kl k2E + k3 + k4  + k5 (EA+ )

+ k (E2A + Af2) (4.13)

t zo! + + + -3 + t4 + -s(& + E)

+ Z6 CA2 E + EA2) (4.14)

As before, the k 's and 's are scalar functions of the invariants

and density P. We also note that, in many cases, it is convenient

V.7 to introduce a decomposition of the free energy into purely elastic

and plastic parts, i.e.,

'O(E, e) dj(E) + OP ((x) (4.15)

If (4.15) holds, equations (4.13) and (4.14) reduce to

A kol + k ~A + k2 (4.16)

r 1 + t + (4.17)

REMARK 4.1: The inclusion of temperature does not result in a

significant alteration in our procedure. For example, if we rewrite

*1 the equation (.4.15) (as in KRONER and TEODOSIU .119741) in the form,

.(E, T) = 4e(E, T) + cP(c, T) (R1)

we would obtain same form as (4.13) ane. (4.14). But the coefficients

become functions of temperature. E.

REMARK 4 .2: One of the representations of0 may be drawn from

linear elasticity, i.e.,

W

l~. .

.. . . . .. . . .. . . . . . . . .. . . . . . .J
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-- e A (tr 2E) + P tr (E)2  (R2)

where X and 1i are Lame's constants. The elastic free energy (R2)

*-- results in the relation

a X (tr E) 1 + 2p E (R3)

Since (R3) is invertible, we obtain

~- T - tr ci (R4)
- E ~ E -

which results in
VM. =i+V V V V 1(

~ l °v - tr 01 R5)
E. E

where E and v are Young's modulus and Poisson ratio, respectively,

and o is an appropriate objective stress rate of Cauchy stress o,

and E is the elastic strain measure of (3.66).Z]

REMARK 4.3: It is noted that in the present theoretical framework,

two representations of scalar functions, the flow potential and free

energy, are used as compared to only one, free energy, in some

thermodynamic approaches (e.g., KRATOCRVIL and DILLON 119691). But

these approaches are equivalent to ours because one must ultimately

provide the evolution equations for the internal state variables

and the plastic strain rate. These are to be determined by the flow

potential P in our theory. E

.................................-.. . . . .
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4.4 Examples

We now investigate how various theories of plasticity fit into

* the above theory.

4.4.1 Cu.e 1: PLandt-Reu6.6 Ftow Rute

The following representations recover the Prandtl-Reuss flow rule

which is also obtained by defining the Levy-Mises yield function as

* - a flow potential. Assuming (4.15) holds, set

(4.18)

When the functionals in (4.18) are differentiable with their argu-

ments, we have

P C (4.19)

&=ClO! X C0  (4.20)

and

A k~ 1 h-k 0  (4.21)

Set C 1 =A -C. Then (A.19) reduces to

X S (4.22)

which is precisely the flow rule for the Levy-Mises material. In

this case, h can be interpreted as the bound in the Levy-Mises

criteria, i.e.,

f (F) tr -2 < h k
Y 0
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When h k (a), the representations (4.18) describes a rate-

dependent plastic material with isotropic hardening.

4.4.2 Ca6e 2: Bett'.6 How Rute

If we set A - 2 tr g2 2, where a is constant, then we recover

Bell's flow rule for finite strain plasticity (see BELL [1983,

* 19841).

4.4.3 Ca.~e 3: The RLageA-Z.LegteL Type KitnematiLc HoAdenL4

The representation

-2
= (h, tr S , tr H, tr S H)

(4.23)

p(X tr 2A

when ip and are differentiable, leads to the following:

P=C S+ CH (4.24)
F - 1~ 2-

=dol I dl H+d 2 (4.25)

and

A= k0 1 + kl (4.26)

Then equation (4.26) implies that

h ko HkA (4.27)

Introducing (4.27) into (4.24) and (4.25) gives

P= S 1 + f1  (4.28)

and
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d o  (4.29)

~A 2 + d 2 (4.30)

where fl= C2 k and f2 d 1lk"

We now demonstrate how Prager-Ziegler-type kinematic hardening

is characterized by the representation (4.23). The Prager-Ziegler

yield function may be written in the form

F(R, Sb, ) a Y tr(S - Sb)2  a2 (4.31)

0 where Sb is the deviatoric back stress which represents the current

center of the yield surface. The yield function (4.31) results in

the flow rule,

P = n S sb) (4.32)

* where n is a hardening parameter. Next we set C - fl= do =n

and S A. Then, equations (4.28), (4.29) and (4.30) give a set

of equations which define a kinematic flow rule and an evolution

equation for back stress or an internal state variable, respectively:

P A(S A) (4.33)

and

A = f A + d2S (4.34)2 2

* REMARK 4.4: As noted in equations (4.24) - (4.26) or (4.28) - (4.30),

P.the tensor valued functions D , o and A are isotropic even though

they represent an anisotropic hardening material (.see equation (4.6)

with appropriate zero coefficients). This interesting fact, that

- .=

" ;- " " " - . . . . . ':-.'> .' " > .' " > . - . ' : %
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a non-isotropic hardening rule results from an isotropic represen-

tation of a flow potential functional or an isotropic form of the

p
constitutive equations for D and A, suggests that references to

anisotropic hardening may not be proper terminology. 0

4.4.4 Cue 4: FLow Rue 6olL Tkacrg MatexLiat

The Tresca yield criteria,

max - - o <0 (4.35)
i j

may be represented by the non-differentiable functionals

p(h, tr g2' tr S2) (4.36)

c~p Of P(m

-2 33

The principal stresses a are functions of trS and tr which

satisfy the characteristic equation

•o3 _ -2 1 -3o
oi 3 1tr ()i - tr(g) 0 (4.37)

Since the Tresca yield function is convex but non-differentiable at

some stress points (the corners of the yield surfaces), the classical

flow rule is characterized by

(P, "c) E ai(a, A ) (4.38)

Oi A- k0 1 (4.39)

where (',) is the subdifferential.

"p(,A) {(P, -a) I satisfies the inequality (3.46)}.
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One can imagine generalizations of the Tresca flow potential

to cases in which P is neither convex nor differentiable. Consider

a hypothetical material, the flow rule for which is characterized by

a convex Tresca yield surface at a given point in its stress history.

Suppose that low latent hardening prevails. Then subsequent aniso-

tropic hardening, after loadings in two distinct direction as in

Fig. 4.1, could conceivably produce a non-convex yield surface of

the type shown in Fig. 4.1. While some may argue that such hardening 4
patterns are rare or non-existent in real materials, they are never-

theless acceptable in the general theory outlined here. As an

example of non-convex yield surface, WILKINS et al 11980] derived a

star shaped yield surface such as that in Fig. 4.2 from experiments

on metal specimens. 0

REMARK 4.5: We also remark that there is frequently some ambiguity

in the literature as to exactly what is meant by the yield surface of

a given material. BELL 11983, 1984] uses two yield surfaces, the

inner surface and outer surface, and HILL 11979] also has distin-

guished between surfaces corresponding to an elastic limit and a

plastic limit. In subsequent examples,we use a single yield limit

(or surface), as the elastic limit, for simplicity.E

Now let us investigate a proposed new model of plasticity (or

viscoplasticity) which need not employ the concept of a yield

surface.

. ,".
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Yield surface

-original convex isotropic
Trescri Yield surface

Figure 4.1 Subsequent yield surface after two loadings in different
directions.
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Figure 4.2 The nonconvex yield surface of WILKINS et al. [198uj.
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4.4.5 Ca6e 5: Bodner et at. Feow Rute

4.4.5.1 lzotAopic Hadening

BODNER and PARTOM 11972, 19751 proposed a flow rule which is

drawn from the classical Prandtl-Reuss flow rule and improved by

phenomenological observations, but which does not involve specifi-

cation of a yield surface. This theory is offered as a way for

characterizing isotropic hardening of certain materials.

For the Bodner/Partom theory, the following form of potentials

can be introduced:

il2ni
= 2 1 (-1) i+B (4.40)

-DOi--O (2ni-l)i! J2 ( i

P -hlX- ho(h -h0 ) exp (-mX/h0 )/m (4.41)

Here

• tr g2
2 2 t

1/n
B2  1 h2 (+l)

3n

and D., hog h and n are material constants.

From the expressions (4.40), (4.41) and the generalized

normality rule (3.45) (in this case, equation (3.48)), we obtain

the following Bodner/Partom flow rule,

-e d
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=(p
2 exp1-B /iJ2 T)S/j2

with (4.42)

1~ + (h 0-h 1 -p-Xh0f

It is noted that as n - ,equation (4.421~ models non-work

hardening materials (i.e., the elastic perfect plastic material).

J

4.4.5.2 Non-IUotopic HW~dei'tg

STOUFFER and BODNER :1979] extended the previous hardening model

* to the case of non-isotropic materials. A plasticity theory for non-

isotropic hardening can be constructed by introducing implicit

forms of potentials which are different from the previous isotropicj

representations, i.e.,

= G A,' a (4.43)

a a a 1P I
1 9 9 9 1 9 9where EC (R x IR x]IR )and a C (MR x IR ),and we employ

two internal state variables, a1 and a2 * As one example, suppose
P1 32

that D Pis given by a generalized Prandtl-Reuss flow rule

P = -~ =K(A)

or (4.4-4)

i j ijkZ ok

.1 0 . 0 1(4.45)

A = =P (h)l + P (h)cy
2 ;a 2 1... 2 -.2
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The symmetry of D Pand a and the reciprocity condition of HILL 11979]

result in the conditions

K =K K -K (4.46)
ij kZ j ikt ijtk -ky-ijj

* If, in addition, we assume that the hydrostatic component of the stress

does no work, then equation (4.44) becomes

K(A)Sor K(4.47) (4.47)
P =K(A1 § o Dij ijk Sk

Due to conditions (61), equation (62) can be rewritten in the

form
^P A

d = T (4.48)

where

{d.} P Tan
1 22 I 22-

'P
33 I33

r2 P 2  2

* i7~33)

Next, a principal hardness C4rection can be defined such that

d = T ((x is not su~mmied) (4.49)

so that we can rewrite equation (445 in a form similar to (4.419):

A, P (h) +P (h)a

1
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Based on experimental observations, STOUFFER and BODNER [1979]

provide the following empirical relations for each term in (4.49)

and (4.50);

8 = D 2 exp 2- n (A 2 / 3 J2)n 2 (4.51)

A1 = h0 + q h(T) dT + (l-q)a Ct Y ()h(T)dT (4.52)

h m(h1-h0) expl-m A/h 0 ]A/h 0  (4.53)

with

a =da/ Id P  Y d P  d/!ll (4.54)

" S DP = T d P  (4.55)

Here the coefficients Do, n, ho, hi, m and q (the latter specifying

the degree of isotropic hardening) are material constants, y

represents the cosine of the angle between the loading direction and

' the principal hardness direction, and 11-I1 denotes the Euclidean norn.

*i 4.4.5.3 Catcutaion o6 Yie.d Su46acu

An interesting by-product of the plasticity theories discussed

here is that one can calculate an equivalent yield surface by setting

an arbitrary permanent strain level as an indication of yielding. In

fact, this rather arbitrary selection of a measure of yielding is no

different than what is done experimentally to determine yield stresses

for most metals.

-

2

--.- .. - --. . . . .

- -... A A .. . . ., - ,....t..t..L. .....
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In the present cases we suppose that we are supplied with a

specimen of material characterized by a collection of constitutive

equations of the Bodner-type le.g. (4.51) - (4.55)] and that an

essentially uniform state of stress is developed during a laboratory

test (e.g., a uniaxial tension test of a cylindrical bar of the

material).

We shall assume that yielding of the material occurs whenever

a .2 percent offset permanent strain is experienced. We shall thereby

trace out an effective yield surface for this material by determining

the yield stress in various directions and connecting these stress

points in the 7-plane

A numerical procedure for performing this construttion is

outlined as follows:

A) Numerical Scheme

An explicit method for integration of rate type-variables is

used for convenience. The following algoritm is used:

(1) specify as an increment of stress,

* Tn =n T IN (4.561~ .max

where N is total number of increments and Tmax is the maxinxm applied

load.

C21 Calculate the increment of the hardness variable h,
Ahn m(h-h exp[-m Xn/h] n-I/h (4.571

0. 1 0 . .
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°'--q

n-i (4.58)
A n - 1 Z Tn-APn- l n-i Z A'k

ii 8LI k=i

(3) Calculate A

n h, n
nt k k-Zi0A h0 + q z Ab + CyqJ signJAE ] Z Ahny (4.59)

(4) Calculate the plastic moduli

n~ 2  n+1 ln /2 n (4.60)Sa D- O exp- T2n (4.60)

(51 Calculate the plastic strain increment

A? n n T n  (4.61)

Next we proceed to the calculation of the yield stress. During

this calculation, the hardness variables A are assumed to be

constant since up to .2 percent plastic strain there should be no

significant change in A a

(6) Increase the stress in various directions until

.2 percent of an appropriate measure of total strain iPil is attained.

n 2 exp n+l 2 n T (4.62)
Di e (a 32]2 a

(7) Project the yield stress into the ,T-plane as follows:

(a First, take stress vectors w.hich lie in the -

a2 plane, since we change the direction of stress vector in the 0, -

02 plane for convenience in step (61. Then calculate the magnitude

U2 I
....... ....... - .
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A I

10

':."of that vector and the angle_Between tbe vector and the o I axis

(see Fig. 4.31:

a a G 1la + a 2

0 = Arc tan (02/a1

(bh Project a into the intersection line and the

line perpendicular to the intersection line which lies in a1 02

plane,

as= in (T + e1

a = cos J + eI

(cl Project as into iT-plane and compute the magnitude

of the projection oy of a ,

O0l 0 s cos p, 0
-22

and

.= 2 2
-' a + a +

7T iT t2

-12

. where d) cos Cl/,IT
."

.d) Compute the angle between the line perpendicular

to the intersection line in the it-plane,

0.
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Co

"c

bewenlanpeean~.. ln

Figure 4. 3 Projection of the stress vector into the i-plane.
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" I
Throughout the steps (a) - (d), the yield stress can be placed in

the Tr-plane.

B) Numerical Experiments

First, we consider a specimen of titanium RMI-5OA. The

material constants of this specimen listed in BODNER and PARTOM

[19751 are:

m =100

n= 1

4 -1Di= 10 sec
02

h = 1150 N/mm ( 167.9 Kpsi)
0

2 *
h = 1450 N/mm ( 211.7 Kpsi)

The elastic constants are taken to be

K = 123,000 N/mm
2

G = 44,000 N/mm2

To check our algorithm, the stress-strain curve produced in

a uniaxial test with the maximum loading T = 400 N/mm was
max

calculated and the results are shown in Fig. 4.4.

Next a yield surface is created after a uniaxial loading

e history for the case q = 1 and q =0 as indicated in Fig. 4.5

and 4.6, respectively. In Fig. 4.5, we recognize that the Bodner

et al theory is equivalent to the Levy-Mises yield criterion in the

-1.

,' .'.. .." " .. ''.'': ,.'' , .-' .'--: " .' .-i '- --" . "-.- _ '. ," .' . . " .- -: _Z.;. ;:
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CM

0
4

U
!E

0

0.00 1.46 292 4.38 5.83 7.29 8.75 10.21
TOTAL STRAIN. %

Figure 4.4 Computed engineering strain-stress curve in uniaxial
test.

-j



DEGREE OF ISOTROPY 1

00

Figure 4.5 Computed yield surfaces in the r-plane for isotropic
hardening; the inner circle is the initial yield
surface.
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DEGREE OF ISOTROPY 0

'.00

Figure 4.6 Subsequent yield surface after uniaxial load with

non-isotropic hardening.

I• .
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case of q 1 1. Quite different results are attained in the

hardening case illustrated in Fig. 4.6; not only do corners appear,

but a marked lack of convexity is seen to appear as the yield surface

assLmes a "key-hole" shape.

4.4.6 Ca~ VI: Modified BodneA and Pa.tom Theo4y

In the previous section, we analyzed the constitutive equations

by Bodner and his coworkers. In their theory, the variable X

conjugate to the hardness variable h needed to be defined but in

our theory of materials of type N this variable can be derived

from the flow potential P. Here we will furnish the theory which

follows the theory of materials of type N, that implies thermo-

mechanical validity, and we will use these constitutive equations

for the finite element computations in the next chapter.

4.4.6.1 Equations

We first introduce a pair of potentials as in the previous

cases:

= [ (trE) 2 + -L (trE) 2 ]

2P0 PO

-h 1X- (h 1-h)exp (-mA) (4.63)

[.O and
ad ,i 

2ni-1
= B (h) i.n Bnh (4.64)

Do (1  i ! (2ni-i) n-. ' J2
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Where B = 0 ( -
1)and X, Pi are Lame's constants and D, h ,h and n3n n 01

are material constants.

Applying (3.48) and results (3.61) and (3.70) to the potentials,

we obtain the following elastoplastic constitutive relations.

PL PX (trE)l +..2 2iPE (4.65)

0 0

h=h + (h0-hl) exp(-mX) (4.66)

P = D exp ~B ~ (4.67)
as 0oh,J 2 n

21 1 ~ S': P (4.68)ah h

where S' =S 1~ tr(S)

From the thermodynamic restriction, we obtained the inequality

(3.71). We need to check whether the given constitutive relations

satisfy this inequality. Otherwise, we have to impose this inequality

to get a correct set of solutions.

S P = [D 1Bh2n

S . s [D -- exp n ''0 hJ2J 2 n

-[positive value] (2J2) >0

- .

=hA S ' P >0

Thus, -(l/6) q-76 > 0, as generally required.
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.4.4.6.2 Vete/rmination o6 Coe66icients 6rom Expe)Lmentai Resutt

We now have a complete set of constitutive equations for .

elastoplasticity. A natural question that arises here is how to

determine the material constants experimentally.

To determine the elastic constants X and W (or Young's modulus

E and shear modulus G), we need two experiments, i.e., tension

test and torsion test in the infinitesimal elastic strain range.

For the plastic parts, there are 5 constants to be determined,

i.e., D0 , h0 , hl, m and n. To determine these constants we need

at least two uniaxial tension (or compression) tests with different

strain rates since the constitutive equations have a capability

to model rate sensitivity. Next, let us examine the role of

individual coefficients.

A) D acts as a scaling factor to the plastic strain rate.
0

It also effects the yield stress in a classical sense.

B) h ° and h are minimum and maximum values of hardness variable.

h will mainly determine the yield stress and h. will limit the maximumo 3.

achievable stress (actually J 2 ).

4 C) m adjusts the growth rate of the hardness variable h with

respect to A.

D) n determines the hardening tendency of the material. We may

obtain a elastic-perfect-plasticity as n . Usually n = 1

is chosen for the hardening material since the detailed approximation

can also be done through the previous coefficients.

.1

U . ." . . .
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Next we explain how to determine those material constants

from experimental data. The stress strain curves in Fig. 4.7 were

taken from the experiments done by Instron 1125 test machine with

pure lead (more than 99%) specimens which have 25 mm gauge length

with cross-sections size 3.8 mm x 6.5 mm.

An Instron extensometer was used for strain (in fact, the

total displacement of gauge length) measurement and the load was

recorded as a function of the strain. The crosshead velocities

applied were 0.5, 5 and 200 mm/min. which, for an effective over-

all gauge length of 25 mm, correspond, respectively, to the constant

engineering strain rate of 3.3 x 10-4, 3.3 x 10- 3, and 1.33 x 10-1,

respectively. The experimental curves at the lowest and the fastest

rates are chosen to determine the material constants.

First we choose n - 1 as a common choice for hardening material.

Let a uniaxial stress in the experiment be o, i.e.

0x a ,Oy 0 , z 0 (4.69)

and

a; 2a/3,O - 3  o = 3 "
O y 3 z 3

(4.70)

J2 2 9[ 9 9 ] 0 2 3

Thus the constitutive equations (4.65) - (4.68) in this state of

stress become simplified as follows:
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- 13 0- sc

4

,
LaJ
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0000 3.33 6.67 1,0.00 13.33 166 20.00

ENGINEERING STRAIN. X

Figure 4.7 Stress-strain curves of pure lead from laboratory
tension tests for various strain rate.
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PooS = - X-)(E1 + E2 + E3 ) + 2uE,
x P 0  P 0

or

El .2oC 0 (4.71)
P

h hi + (h o-h ) exp (-mX) (4.72)

2/3Do 2h2  (473)P'1  " - exp (- - -2) ( .3

, -OP 1  (4.74)
h

To determine the constants ho and we utilize a conventional

definition of yield stress, i.e., about a 0.2% offset strain. Since

h - h0 when yielding starts to occur and two unknowns, h and Do,

" need be determined, we take two test results at the highest and the

lowest strain rate in Fig. 4.7.

REMARK 4.6 In experiment, the engineering strain is defined by

E (L-L0)/L 0  L -current length and Lo Initial length. But the

value of our strain definition in this uniaxial situation (for detail,

see section 3.3.2) can be found as:

Total strain 0E + P1 - CLo/L

00
With a t 0 and C = 17900 N/mm2  we obtain the following values

' QF; at onset of yielding.

" ......... . .. -
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V.

Total strain rate Plastic strain rate Cauchy stress

;\-1.32 x 10 -  1.27 x 10 -  10 58 N/ am2

3.3 x 10-4 3.2 x 10-4 8.73 N/ram 2

-. Then from this table and (4.73), we have

Do = 1029400 N/mm 2 sec

h = 26.73 N/mm2
0

To determine h1 and m, wae need to calculate h. Taking logarithm

of (4.73) gives

tn P1 tn 2/3D -n h -2 (4.75)

By using the Newton Raphson scheme, we obtain the variation of h

versus strain as in Fig. 4.8.

With the computed value h, we are ready to determine h and m.
i

First, take time derivative to (4.72).

h =-m(h -hi) exp (-mX)X (4.76)
0

And then, from (4.72) and (4.76) we obtain

m.; o n ( .7

1 h-ho

0) (477)7) gve

and

h I h 4 - (4.78)

i'. .
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Figure 4.8 Computed variation of the internal state variables
from experimental data
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We compute m and h. by an iterative scheme at several loading

points and get averages.

m 75

h1 - 85 N/mm
2

Fig. 4.9 shows the experimental and the computed results.

-!i

3

:--

:" !1

~.

. . -- =



108

C!J
C!

zo .21 e

FC

-EXPERIMENTAL

CALCULATED

000 1. 67 3.33 5.00 6. *67 3. 33 10.00j

ENGINEERING STRAIN. X

J

Figure 4.9 Experimental and calculated stress and strain curve
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CHAPTER V

FINITE ELEMENT APPROXIMATION

In this chapter, we solve a boundary value problem with the

constitutive equations introduced in the Section 4.4.6. We limit

ourselves to quasi-static problems involving no body forces and

no temperature dependence. That means we do not solve the energy

equation directly and that the equation of momentum balance in

the reference configuration will be of the form

VT 0 in C (5.1)

where T is the first Piola Kirchhoff stress and

def 3

Early accounts of finite element models of elastoplasticity

were reported by ODEN and KUBITZA [1967], MARCAL and KING [1967],

ARCYRIS [19671, and ZIENKIEWICZ et al [1969], and finite defor-

mations were treated by ODEN [1968, 1970, 19721 and others. A

variety of different formulations of the large deformation problem

have been explored, and we mention the incremental Lagrangian

formulation of HIBBIT, MARCAL and RICE 119701, the updated2

Lagrangian scheme,of, e.g., MCMEEKING and RICE [19751, and various

related schemes proposed by NEEDLEMAN 11972], LARSEN and POPOV

0

. . -..
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(1974], BATHE, RAM and WILSON (1975], ARGYRIS et al. [1977, 19781,

CESSCOTTO, FREY and FOUNDER [19791 and ATLURI [1980]. Numerous

applications of finite element methods to metal forming problems

can be found in the literature and we mention as examples those in

the papers of LEE, MALLET and YANG [1977], NAGTEGAAL and DeJONG

[1980], KEY, KRIEG and BATHE [1979], ARGYRIS and DOLTINIS [1979,

* 1980], TAYLOR and BECKER [1983], and KIKUCHI and CHENG [1983]. A

good survey of current theories and numerical methods for finite-

deformation plasticity can be found in the volume edited by

NEMET-NASSER, ASARO, and HEGEMIER, [1984] and in the proceedings

edited by WILLAM [1984]; see also the recent work of SIMO and

MARSDEN [1984], SIMO and ORTIZ [1985], and KIM and ODEN [19851

and the references therein.

5.1 Formulations

Here we adopt the incremental total Lagrangian formulation,

where the reference configuration is always the initial configuration.

Let q denote a test function which belongs to a set of V admissible

displacement increments. Then a weak form of equation (5.1)

can be written

fQ0T Vq dx f QoTN'q dS, \q V (5.2)

L where N is the outward normal unit vector in the reference configu-

ration. ,

"- • -'" . " " . ." -""-, - . " -" ."".''. -""-'' . .,'. " " .. ', : " " " - .'." . .'- '.''-" ,""""--'-"-'" "" " ." 5"'"'.



We assume that the equilibrium state is achieved at n-i th

incremental step, i.e.,

f T :qdx T N q dS, V7' q V (3

Then at the nth step,

n
T - E A~T T A~T
- n A ..n-l .nri

t =T N t +tt

-n - - -n 1 + _

and

AT n V dx a tt *q dS, VqE V (5.4)
0 0~

From the definition of the first Piola-Kirchhoff stress and

equations (3.68) and (3.72),

AT &(JRSU)

A(-T Il
= (A(trE)F + 2iUREU )

F-T
-X(trAE) + 2 jAEU

*+ X(trE)tAFT +2 ,REU- + 2viREAU 1  (5.5)

By applying the decomposition relation (3.68) and the form (5.5),

equation (5.4) becomes
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j Xtr(At D )FT + 2wAt D F -T]:Vq dx

-n - n-1

-j [X(trap)F- + 2p1(R aP U n] :Vq dx

+ ',X A(trE)AFT + 2,j (AR E U- + R E U- 1 :Vq dx

at :q dx VqEV (5.6)

Now we apply the tangent stiffness scheme with the idea of

successive approximation during iterations in an incremental step.

th
We arrive at the following linearized form at the i iteration

in the nth increment,

f [Xtr(eAt D + 2AtD](FT )- :Vq dx
S10- n n-

f j x(tr&P)F -T+ 2WAR AP U-) :Vq dx
0 0 n

c -T -1-I-
- [X(trE)AF + 2ij(AR E U + R E 'U )I n :Vq dx

0 - - -- -

f~ &tl:q ds AT : Vq dx,
0~ n 0 -n -

V q EV (5.7)

Here the last integrals on the right hand side of (5.7) is the left-

hand side of (5.6) at the i thiteration and the first two integrals

zn



* 113

5.2 Finite Element Approximation

First we interpolate the functions A~u and q as follows:
-n

au u ( x), u ~

- n -a a C

LqJ

where ( x) is a shape function, we have used the summation
M

convention, and u = Z& u, M being the iteration index.
.n - -

Then

t i D n -1i-i -T i-l Mu T

ax

r(FlBl+F20B2 )u 1 [(F30 8 1 +F40 8 2 )u 1+(Flo 8 1 +F20 2)U 2

* (5.10)

[(l +F2 (F23(30%F0 )uI o F40 )u2
2 B' 6,2B a2 B' a ,B, B:

NN W* ..... ....

127
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of (5.7) are obtained by taking 6P, AR and AU~ as functions of

U and transferring these to the right-hand side, i.e.,

i-i cAP i-i IAR ji-i
AU, AR = AU ,etc.36U n *n _n aAUn _9

Note that AP ,etc. go to zero when the iteration converges
_n

since P , R , etc. are defined in the following fashion:

11 = P + E A P , etc....
n-l n

Adding (5.3) to (5.7) gives

pi i -Ti-i
f2[Xtr(At D )+ 2p~ At D )(F ) :Vq dx

0 nn _n n

C -~T - -
f [X(trAP)F + 2pj(R AP U )] :Vq dx

- [X(trE)AF -T+ 2P~(AR EU +R U ] :'7q dx

f t : q ds -f T :Vq dx

'q :
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-T *1 FFl F2 f
F j1 and VO = (5.11)

-T F3 F4,

Fl, a'i+ F2 , = BA

F30B6 1 + F4 6,2 =8B

BA u~ 1 1{BB u~ 1 +BA u 2
iAtDi=

1 (BSA u2 + BB u} 16B u5 2 (5.12)

To reduce bookkeeping, we note that the terms AF and (AU
-n n

should tend to zero when convergence in each iteration procedure

is achieved. It thus would allow us to delete the second integral

on the right-hand side of (5.8). Then the discretized equations

of (5.8) at each node in nth element would assume the form,

{q 1  F{FITaIAA ++I(F30 1BB+Fl% BB)}u

+ f(-F4 'B+F2o 2BB)IuB

+( (F30 1BA + Flo BA) + F4 Bu27

S 
dx

+ {I(F40 lBA + F20 2BA) + F4o 2BBju 2"j
2 CL, 2a,

. :i

,1

• ' -'" . .... . A L " ,:" ._ ..-
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.- A Cl o ,C 1

(q 1,q 2 J X(P1 + P2) + a,,2 dx

+ C 1  d -RSl I SUO16Id

f aB 12 + CS4220

".~~~C i a, A llt 2

.~( + 6t ,qRSUP3+P2 d1 1, 12,lo ,i + ,22€ -

d-. .'

(t2 + NaL RSU20 RU4

- ~ q

E+' (5.13)

02 q+ OL

where is an nth element and 3Q is the side of the element on

which the traction is prescribed. Summations on c and 8 are

" , implied. Also,

R1 R1 1 P3 i-I iVPU
[R] =U]

n _R3 R2 LP3  P2_j LU3  U2:

FRP1 .U2-RP2 .U3-RP1 .U3+RP2 .U1
[C] =2g [RPI = [R] [&P][m ._. Det U ~

LREP.U2-RP4.U3-RP3.U3+RP4.UlI

[S3i F1FSUl RSUI

.,. " .

•S~ =F 1- [RSU] - ( R] [Sl(U-l
n IS3 S2 RSU3 RSU4
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and

aA -Fl~a I + F3,
cz,1 a,2

aB -F2 a  + F4,,1,

Again, by setting

cC S F3, + F1-

ai,2fD =-F4 a, + F2 ,

equation (5.13) can be reduced to the following set of simultaneous

equations for each element:

a c8Kl K12  u F1

81 ' "'' NN K2 1  K2 Lu (5.14)

L

for every a = l "2,...NN.

* Here the a.'s and 6.'s are global node numbers in an element and

NN is the number of nodes in each element.

In global form,

N (5.15)

12 a
ELEM=l 2 NN 21 " L"a

(515
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for every a

. where N is the number of elements, ELEM is an element number and

a8KII -fN N{i'aA-BA + 21'Fl- 1BA + ii-aC.BB} dx

0

aBKl 2 = f N{A-aA'SB + 2j'F3-a, 2BB + P'aC.BA} dx

0

a8K = f N{ 'aB'BA + 2P'F2"c8,IBA + p'aD.BB} dx

0

a8K2 2 = IN{A'aB'BB + 2 w'F 4 *a, 2 8B + .iacD-BA} dx

0

F1  +N{()F1P+ - RSU1)0 a l + (X(P 1 + P2)F3
F= J + P2)F + Cll , 2 1

+ C - RSU3)a }dx + f t ds
21 Fa,2 1 n

2
Sf 0{((PI+P2)F2 + C - RSU2)C'I + (X(P +P2)F4a .'.N 1 2 12 ,11 2

0
ds 'i

+ C - RSU4)o 2 dx + f t0 ds
22 a,2 f n O

n

REMARK:

i) In the first iteration at each incremental step, we impose

the incremental essential boundary conditions: but after the first

. iteration, we must impose the zero values.

ii) It is interesting to note that (5.15) reduces to equation

for stiffnesses in linear infinitesimal elasticity upon appropriate I
, specializaton. In the case of infinitesimal deformation,
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F = 1, R = 1, U = 1

Then

A ' B ,2 ' a,2 a , I

BA = 8,1 , BB B ,2

Therefore, as expected,

aBK = f N[(x+ 2u) ,i0, I + 0c,2€8,2 ]  dx

11 fK1 N acl,l 1Scl aB,2] dx

K21  f N[ a,28,l + ,i8,2] dx
m-e

' ~aBK2 f
.K= + 2B)o, + UO dx

Note that the assembled matrix then becomes symmetric.

In each iteration, the following constitutive routine has to

be solved:

L (-i-i).h h1 + (h0 -h 1) exp (-n
-1 )

-°i-i

APi Atn P(hni a-1

-n rL ni -nf

AE= AU U 1 s P
* n -. sym1  -i

. . .

. ." _

- ... A..t. .. t3f.,,a.
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AS - [X (trAE )l + 21.'AE

-n. -n

' tA L I_ i': Api
n i n _n

hnn

In the actual computation, we subdivide the incremented solution

AU U y1 by a prescribed number and proceed by using the previous

forward Euler method.

Since the previous constitutive equations assume incompres-

sibility in the plastic deformation, care must be taken in choosing

a stable element approximation (see NAGTEGALL, PARKS and RICE

[1974] and the detailed stability analysis of ODEN et al [1982,

1984]). Here rectangular elements which consist of four 3-node

triangles; so-called, four constant strain triangles (4CST element)

issued. A mathematical analysis of this 4CST element can be found

in KIKUCHI, ODEN, and SONG [1982] and KIKUCHI [1983].

5.3 Numerical Examples

In this section several example problems are solved to verify

the algorithm described above.

The proposed set of constitutive equations (equations (4.65),

- . (4.66), (4.67) and (4.68) contains 7 constants to be determined.

S'~
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I

from experimental data. The two elastic constants can be determined

by standard procedures,but the plastic constants require at least

two uniaxial tests at different strain rates.

Following Bodner and Partom, we consider estimated constants

on Titinium for our constitutive equations, which are similar

to theirs. The material parameters are as follows:

i) Elastic Constants

= 93667 N/mm2 (1 N/mm2 = 106 Pa)

wi 44000 N/mm
2

ii) Plastic Constants

n= 1

m 50

D = 1.35 x 10? sec - 1

h 1150 N/mm2

h 1450 N/mm
2

As a first computational example the homogeneous plane strain

elongaton of a test block is computed. Results are shown in

Fig. 5.1. The computed results reflect up to 20 percent engineering

strain and show strong sensitivity to strain rates. Note that

slower loading results lower yield stress.

A result of loading, unloading and reloading is shown in Fig.

5.2 with a strain rate of 1.5 x 10 per second. The so-called
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ratchet effect at yield point in the reloading process is not

apparent because of a large amount of deformation.

In the third example, the variation of the internal state vari-

able with strain is shown in Fig. 5.3. In this case, the internal

state variable represents hardness of the material. It is seen to

vary with strain in a way which is qualitatively the same as the

stress-strain relation.

Before solving a complicated plane strain problem, we next

check the algorithm's ability to simulate rotational rigid-body

motions. This is done by fixing a corner of the stressed element

and prescribing the essential boundary conditions at each incremental

step as in TAYLOR and BECKER [1983]. Suppose that a block element,

such as that in Fig. 5.4, is subjected to an elasto-plastic defor-

mation according to the following program: We prescribe 0.5 percent

engineering strain with a 0.5 x 10- 3 per second rate. Next the

block is rotated with prescribed incremental rotation angles while

maintaining the preloaded deformation. The results are listed in

Table 5.1 with increments 90, 100, 150, 30 0, and 450 to make 900

rotation. If the computed stress rates are appropriately objective,

the stress should not change during these rotations. We observe

errors in the stress of only about 0.3 percent and note that there

is little error between a large step size (450) and a small (90),

as expected from the way we defined deformation measures and

rotationally-invariant stresses.

S

, - . . . . -
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Figure 5.3 Variation of the internal state variable vs. strain.

',.I
Im

'|

',.' " '.."" .' ." " ''j" ' m " ; " ' a ir -" " . . .~,,*P a ,am,~~,' -



126

74

S, = 322.5 N/mm2

S 0. N/mmn 2  -

0.5% S, = 0. N/m 2I
strain

S, = 161.3 N/ MM 2

= 80.7N/mm 2

(a)

(b)

K0
Figure 5.4 Calculated rigid body motion with 300 increments,

*a) loading before rotation
* b) progressive configurations

L
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Table 5.1 Dienes Stress Versus Incremental Rotation Angle

Inrmetx y xy

g0 323.4 0.6 0.2

100 323.3 0.9 -0.1

150 323.6 1.9 0.1

300 323.7 0.4 0.1

450 323.5 0.1 -0.2
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The final example is a head forming problem in plane strain.

A 4 by 5 unit rectangular billet, which is confined at the lower

boundary is loaded at the upper part without friction. Incremental

displacements are prescribed at the five nodes in the top of the

billet. Computed, progressive deformed shapes, and J stress

contours are shown inFigs. (5.6) and (5.7). Figs. (5.5) and (5.8)

show the undeformed and the deformed Lagrangian finite element mesh.

The residual J2 stress contour is shown in the left part of the

deformed configuration.

Throughout the finite element computations, the convergence

at each incremental step was checked by calculating the maximum

relative error of successive incremented displacements. The

relative error is computed as the ratio of the correction between

iterations to the first solutions (incremental displacements) of

the incremental step. A range of tolerances was set as 0.01-1

percent, depending on step size. Generally, the convergence was

achieved in two iterations except where severe changes in the

deformation from elastic to plastic states are experienced.

i
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CHAPTER VI

CONCLUDING REMARKS

6.1 General

The classical theory of plasticity evolved from simple obser-

vations that irrecoverable deformations of many materials may

- .result from a simple load cycle. Characteristic of the classical

theory and the developments which arose from it over the last

half-century are notions of yield surfaces, hardening laws, and

a rather simple kinematics in which the total strain is the sum

of so-called elastic and plastic parts. Frequently in modern

engineering and manufacturing, situations are encountered in which

a more sophisticated constitutive theory and kinematics is needed

to describe elastoplastic behavior. This need, and also the

natural evolution of plasticity theory as a part of mechanics,

has led to some fundamental questions of the mechanical and math-

ematical foundations of plasticity. For example, how does one

develop a theory of elastoplasticity within the framework of

modern continuum thermomechanics? How does one obtain a set of

constitutive equations which are valid for wide ranges of defor-

mations? What are the deficiencies of existing kinematical measures

and is it possible to devise new kinematical measures appropriate

...-134-

N..
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for finite elastoplastic deformation? Can such general theory

be put to use to model practical problems and is it possible to

devise numerical schemes for implementation of such a broad theory?

In this report, an attempt is made to resolve some of these

questions. Some success in each area of inquiry has been

attained.

6.2 Summary of Results

According to the general aim of this report, the following

specific results were obtained.

1. Materials of Type N

A new and general theory of finite elastoplasticity has been

developed which has the following features:

a. Involves two potential functionals, one being the

free energy functional * and the other the general
flow potential *.

b. Does not necessarily require the specification of

a yield surface.

c. Does not require that i be either convex or differ-

entiable.

d. Involves an internal state variable a.

e. Reduces to classical theories as special cases.
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f. Is not exclusively a rate-type theory, as the history

of microstructural changes is governed by an evolution

equation for a.

The material characterized by these features is referred to

as a "materials of type N" since the framework generalizes the

notion of normality in plasticity.

2. Kinematics of Finite Elastoplasticity

A new kinematical description of notion, valid for finite

elastic and plastic deformation and which differs from the theories

of Lee and Nemat-Nasser has been derived. Its features are as

follows:

a. The effects of rotation are separated from pure

stretching.

b. Formalizes the fact that the position vector (or

displacement vector) in the intermediate configuration

may not be continuous.

c. Results in a correct decomposition of deformation

rate into an "elastic" and a "plastic" part.

3. Continuum Thermomechanics and Analysis

a. Analysis via Coleman-Noll thermodynamic methods are

used to deduce restrictions on the constitutive

equations.

1.
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b. It has been shown that the theory results in a fully-

determined system of equations governing the thermo-

mechanical behavior of materials of type N.

c. Isotropic representations of flow potential and the

free energy for the elastoplastic material of

materials of type N has been developed and studied.

4. Examples of Materials of Type N

a. Classical plasticity theories are shown to be special

simple cases of a materials of type N.

b. An analyses of some newly developed constitutive

equations, which do not involve yield functions, is

given.

c. Existing constitutive equations for various plasticity

theories can be shown to fit within the theory of

materials of type N upon appropriate modification.

5. Finite Element Computations

a. Chooses a modified version of the Bodner and Partom

equations for finite element approximation.

b. Numerical algorithms and a code are developed for

solving a total Lagrangian formulation of the general

theory.

c. A test problem of rotation of a prestressed block

and head forming problem are solved.

S 9

. - - .
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6.3 Future Research

1. Further study is needed to verify that other useful

constitutive equations, e.g., by HART [1970, 1976], by MILLER

[1976] and anisotropic version of BODNER [1985], can be recast

in a form covered by the theory of materials of type N. It is

anticipated that such modifications are possible and their con-

struction would be very helpful.

2. To predict the useful lifetime or realibility of perfor-

mance of engineering material, failure or damage accumulation laws

need to be developed. It is expected that it may be possible to

incorporate these effects in a theory through the introduction of

appropriate internal state variables. One possible example of

this may be the work by LEMAITRE [1984].

3. Further development of a modular computer code is needed

which can simulate more realistic problems and may include temper-

* , ature effects and appropriate frictional contact conditions,

possibly, in a three-dimensional setting.

le

S
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APPENDIX

ELEMENTS OF CONVEX AVNLYSIS

We shall provide here a brief summary of some of the concepts

of convex optimization theory which are prerequisite to the ideas

*described in the body of the report. For more detailed

accounts, the books of EKELAND and TEMAN [1976] or ROCKAFELLAR

[1970, 19791 or the recent text of ODEN [1985] can be consulted.

We begin by introducing the following notations:

=the extended real numbers; if IR is the real number

system, IR = ]R U{±

U,V = topological vector spaces

=*V topological dual spaces of U and V respectively

('~~ K''u =duality pairing on V* x V and U* x U,

respectively; i.e. if v* E V* and v E? V, then v*(v)

(V*,~vvetc.

It is worthwhile to recall the definition of the limit-superior

(lini sup) and the limit-inferior (lim inf) of sequences of real

numbers, extended real-valued functions of sequences, and sequences

of sets in a topological vector space V.

UAP s5up/eim7 i4.

*For Ja n I a sequence of real numbers

|. - - - - * *-
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lim sup a = inf sup an

n - aDN E IN n>N

(A.I)

lim inf a = sup inf a
n n

n D N EINn>N

For f: IR IR

lim sup f(x') = inf sup f(x')

x x 6>0 O<Ix'-xl<6

(A.2)

lim inf f(x') = sup inf f(x')
x' x 6>0 O<Ix'-xI<6

For {An } a sequence of subsets of the underlying set of
n

topological space V,

lim sup A = (n )

n -P ar m1 nfm
(A.3)

lim inf A n  (n A)

n m=l namr

For example, if {xn } is a sequence of real numbers which converges

to x and f : I, LIM SUP f(xn) is the supremum of all cluster

points of f at x, as indicated in Fig. A.1 (with an analogous

interpretation for lim inf).

The concept can also be applied to multifunctions from one

topological vector space to another. Indeed, if r U- V (with

q(u) a subset of V for each vector u t U), then



* ~4l

Figr sulp Lii supeior limit.. i.ferio ofdicntn1

function f: *IRatx
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(A.4)

lir sup r(u') [ (r(u') + A)]
U' u A EN(O) B EN(u) u'E B

and 
(A. 5)

lir sup r(u') = (r(u') + A)]Eli u'u ) )

U. ' u AEN(0) B u) u' B

where N(O) and N(u) are collections of neighborhoods of O,u,

respectively.

Lim zup in/Liy inf up p

In addition to the notion of limit superior and limit inferior,

it is convenient to introduce the concepts of lim sup inf and lim

inf sup introduced by ROCKAFELLAR [1980].

Let F be an extended real-valued function from U x V into IR,

let u' u in U and v'- v in V. Then we define
(A.6)

Lim sup inf F(u'v') = sup inf sup inf F(u',v')
U u,v'+ v B E H(v) A EN(u) u' A v' E B

Likewise,
(A.7)

Lim inf sup F(u',v') = inf sup inf sup F(u',v')
U' u,v' v BE (v) A N (u) u' E A v' E B

Similarly, Lim supsup and Lim inf inf can be defined in an analogous

way.

The meaning of these operations can be more easily understood

2
in the case of a real-valued function F defined on IR , such as

the discontinuity at the origin shown in Fig. A.2. To compute

v-0:I
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F xy
NF

Fy

Figure A.2. A function F discontinuous at the origin 0:
solid lines at surfaces of discontinuity indi-
cate values assumed by F.
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Lim inf inf F(x',y), for example, we compute lrn inf F(x',y) for
X' O, y' .0 xv . 0

a fixed y'. This gives the a function of y' which has as its graph

the curve AC U EH. The lir nf of this function is the point E,
y1  0

denoted F 1in the figure. Similarly lrn sup F(x',y') for fixed y',
1 X' - 0

is the curve, HfD U BA and lrn inf of this curve is the point D,

y,. 0

denoted F in the figure. In summary for this example,
2

Lim inf inf F(x',y') =F 1
X' . 0 y' .01

Lim sup inf F(x',y') =F 2
x'*- 0 y, - 02

Lim inf sup F(x',yl) F F3
x'*- 0 y' 0

Lim sup sup F(x',y') =F 4
x1- 0 y'- 0
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